

Hands On DarkBASIC Pro
Volume 1

A Self-Study Guide to Games Programming

Alistair Stewart

Digital Skills
Milton
Barr
Girvan
Ayrshire
KA26 9TY

www.digital-skills.co.uk

Copyright © Alistair Stewart 2005

All rights reserved.

No part of this work may be reproduced or used in any form
without the written permission of the author.

Although every effort has been made to ensure accuracy, the
author and publisher accept neither liability nor responsibility
for any loss or damage arising from the information in this book.

All brand names and product names are trademarks of their respective
companies and have been capitalised throughout the text.

DarkBASIC Professional is produced by The Game Creators Ltd

Printed September 2005
2nd Printing November 2005
3rd Printing January 2006
4th Printing November 2006
5th Printing February 2007
6th Printing September 2007
7th Printing February 2008
8th Printing September 2009 (with corrections)
9th Printing July 2010 (with corrections)

Title : Hands On DarkBASIC Pro Volume 1

ISBN : 1-874107-08-4
ISBN-13 978-1-874107-08-8

Other Titles Available:

Hands On DarkBASIC Pro Volume 2
Hands On Pascal
Hands On C++
Hands On Java
Hands On XHTML

Cover Design by Neil King 2007

Table Of Contents
Chapter 1 Designing Algorithms

Designing Algorithms . 2
Following Instructions . 2
Control Structures . 3

Sequence . 3
Selection . 4
Complex Conditions . 9
Iteration . 16

Data . 21
Operations on Data . 22

Levels of Detail . 24
Checking for Errors . 28
Summary . 31

Solutions . 34

Chapter 2 Starting DarkBASIC Pro

Programming a Computer . 38
Introduction . 38
The Compilation Process . 38

Starting DarkBASIC Pro . 40
Introduction . 40
DarkBASIC Pro Files . 40
Getting Started with DarkBASIC . 41

First Start-Up . 41
Subsequent Start-Ups . 41
Specifying a Project . 41

A First Program . 42
Saving Your Project . 44

First Statements in DarkBASIC Pro . 45
Introduction . 45
Ending a Program . 45

The END Statement . 45
The WAIT KEY Statement . 45

Adding Comments . 46
Outputting to the Screen . 48

Introduction . 48
The PRINT Statement . 48

Positioning Text on the Screen . 51
The SET CURSOR Statement 51
The TEXT Statement . 52
The CENTER TEXT Command 53

Changing the Output Font . 54
The SET TEXT FONT Statement 54
The SET TEXT SIZE Statement 55
The SET TEXT TO Statement 55

Changing Colours . 56
How Colours are Displayed 56
The RGB Statement . 57
The INK Statement . 58
The SET TEXT OPAQUE Statement 60
The SET TEXT TRANSPARENT Statement 60
The CLS Statement . 61

Summary . 62
Some Display Techniques . 64

Screen Resolution . 64
The SET DISPLAY MODE Statement 64

Choosing a Text Font . 65
Erasing Text . 65
Shadow Text . 67
Embossed Text . 67
Summary . 68

Solutions . 69

Chapter 3 Data

Program Data . 74
Introduction . 74
Constants . 74
Variables . 75

Integer Variables . 75
Real Variables . 76
String Variables . 76
Using Meaningful Names . 77
Naming Rules . 77

Summary . 78
Allocating Values to Variables . 79

Introduction . 79
The Assignment Statement . 79

Assigning a Constant . 79
Copying a Variable�s Value . 80
Copying the Result of an Arithmetic Expression 80

Operator Precedence . 83
Using Parentheses . 84

Variable Range . 85
String Operations . 85
The PRINT Statement Again . 85
Other Ways to Store a Value in a Variable 87

The INPUT Statement . 87
The READ and DATA Statements 88
The RESTORE Statement . 91

The Time and Date . 91
The TIMER Statement . 91
The GET TIME$ Statement . 92
The GET DATE$ Statement . 93

Generating Random Numbers . 93
The RND Statement . 93
The RANDOMIZE Statement 94

Structured English and Programs 95
Using Variables to Store Colour Values 96
Named Constants . 96
Testing Sequential Code . 97
Summary . 98

Determining Current Settings . 100
Introduction . 100
Screen Settings . 100

The SCREEN HEIGHT Statement 100
The SCREEN WIDTH Statement 100
The SCREEN DEPTH Statement 101

Colour Components . 101
The RGBR Statement . 101
The RGBG Statement . 102
The RGBB Statement . 102

Text Settings . 103
The TEXT BACKGROUND TYPE Statement 103
The TEXT STYLE Statement 103
The TEXT SIZE Statement 104
The TEXT FONT$ Statement 104
The TEXT WIDTH Statement 104
The TEXT HEIGHT Statement 105

Summary . 105
Solutions . 107

Chapter 4 Selection

Binary Selection . 112
Introduction . 112
The IF Statement . 112

Condition . 112
Compound Conditions - the AND and OR Operators 116
The NOT Operator . 118
ELSE - Creating Two Alternative Actions 119

The Other IF Statement . 120
Summary . 121

Multi-Way Selection . 122
Introduction . 122
Nested IF Statements . 122
The SELECT Statement . 124
Testing Selective Code . 127
Summary . 129

Solutions . 130

Chapter 5 Iteration

Iteration . 134
Introduction . 134
The WHILE .. ENDWHILE Construct 134
The REPEAT .. UNTIL Construct 136
The FOR.. NEXT Construct . 138

Finding the Smallest Value in a List of Values 142
Using FOR with READ and DATA 144
The EXIT Statement . 145

The DO .. LOOP Construct . 146
The WAIT milliseconds Statement 147
The SLEEP Statement . 147

Nested Loops . 148
Nested FOR Loops . 149

Testing Iterative Code . 150
Summary . 151

Solutions . 153

Chapter 6 Drawing Statements

Drawing On The Screen . 160
Introduction . 160
Basic Drawing Commands . 160

The DOT Statement . 160
The POINT Statement . 161
The LINE Statement . 162
The BOX Statement . 163
The CIRCLE Statement . 164
The ELLIPSE Statement . 165

Summary . 166
Demonstrating Basic Shapes . 167

Introduction . 167
A First Look at Animation . 169

Basic Concepts . 169
How to Remove an Object from the Screen 169
How to Move an Object . 170

Solutions . 171

Chapter 7 Modular Programming

Functions . 176
Introduction . 176
Functions . 176

Designing a Function . 176
Coding a Function . 177
Calling a Function . 177
Another Example . 179
Parameters . 180
Pre-conditions . 182
The EXITFUNCTION Statement 182
Return Types . 183
Local Variables . 186
Global Variables . 187

Designing Routines . 188
Specifying a Post-Condition 188
The DrawTextLine Mini-Spec 188

Creating Modular Software . 191
Top-Down Programming . 195
Bottom-Up Programming . 197
Structure Diagrams . 198
Summary . 199

Subroutines . 201
Introduction . 201
Creating a Subroutine . 201
Calling a Subroutine . 202

The GOSUB Statement . 202
Variables in a Subroutine . 202

Summary . 203
Solutions . 204

Chapter 8 String Functions

Standard String Functions . 210
Introduction . 210
String Operations . 210

The LEN Statement . 210
The UPPER$ Statement . 211
The LOWER$ Statement . 212
The LEFT$ Statement . 212
The RIGHT$ Statement . 213
The MID$ Statement . 213
The ASC Statement . 214
The CHR$ Statement . 215
The STR$ Statement . 215

The VAL Statement . 216
The SPACE$ Statement . 217
The BIN$ Statement . 217
The HEX$ Statement . 218

Summary . 218
User-Defined String Functions . 220

Introduction . 220
Creating New String Functions . 220

The Pos() Function . 220
The Occurs() Function . 221
The Insert$() Function . 221
The Delete$() Function . 222
The Replace$() Function . 222
The Copy$() Function . 222

Using Your Routines in Other Programs 223
The #INCLUDE Statement . 223

Summary . 225
Solutions . 227

Chapter 9 Hangman

Creating a First Game . 230
Introduction . 230
The Rules of the Game . 230
What Part the Computer Plays in the Game 230
Designing the Screen Layout . 231
Game Data . 231
Game Logic . 232
Game Documentation . 233
Implementing the Design . 237

Adding InitialiseGame() . 238
Adding ThinkOfWord() . 239
Adding DrawInitialScreen() . 241
Adding GetGuess() . 243
Adding CheckForLetter() . 247
Adding DrawLetter() . 248
Adding AddToHangedMan() 249
Adding WordGuessed() . 249
Adding HangedManComplete() 249
Adding GameOver() . 249

Keeping a Test Log . 250
Flaws in the Game . 250

Omissions from the Code . 250
Deviating from the Original Specifications 251

Final Testing . 252
Summary . 252

Solutions . 253

Chapter 10 Arrays

Arrays . 258
Introduction . 258
Creating Arrays . 259

The DIM Statement . 259
Accessing Array Elements . 260

Variable Subscripts . 261
Basic Algorithms that Use Arrays 264

Calculating the Sum of the Values in an Array 264
Finding the Smallest Value in an Array 265
Searching For a Value in an Array 266
Keeping an Array�s Values in Order 267
Using an Array for Counting 269
Associating Numbers with Strings 270
Card Shuffling . 271
Choosing a Set of Unique Values 273

Dynamic Arrays . 275
The UNDIM Statement . 275

Using Arrays in a Game . 276
Multi-Dimensional Arrays . 276

Two Dimensional Arrays . 276
Inputting Values to a 2D Array 277
Even More Dimensions . 277

Arrays and Functions . 278
Summary . 278

Solutions . 279

Chapter 11 Bull and Touch

Bull and Touch . 284
Introduction . 284
The Rules . 284
The Screen Layout . 284
Game Data . 285
Game Logic . 285
Game Documentation . 285

Solutions . 292

Chapter 12 Advanced Data Types and Operators

Data Storage . 298
Introduction . 298
Declaring Variables . 298

Boolean Variables . 299

Type Definitions . 300
The TYPE Definition . 300
Declaring Variables of a Defined Type 301
Accessing the Fields in a Composite Variable 302
Nested Record Structures . 303

Arrays of Records . 304
Lists . 305

The ARRAY INSERT AT BOTTOM Statement 306
The ARRAY INSERT AT TOP Statement 308
The ARRAY INSERT AT ELEMENT Statement 308
The ARRAY COUNT Statement 309
The EMPTY ARRAY Statement 310
The ARRAY DELETE ELEMENT Statement 310
The NEXT ARRAY INDEX Statement 311
The PREVIOUS ARRAY INDEX Statement 314
The ARRAY INDEX TO TOP Statement 314
The ARRAY INDEX TO BOTTOM Statement 314
The ARRAY INDEX VALID Statement 315

Queues . 316
The ADD TO QUEUE Statement 318
The REMOVE FROM QUEUE Statement 319
The ARRAY INDEX TO QUEUE Statement 319

Stacks . 320
The ADD TO STACK Statement 320
The REMOVE FROM STACK Statement 321
The ARRAY INDEX TO STACK Statement 321

Summary . 322
Lists . 322
Queues . 323
Stacks . 323

Data Manipulation . 324
Introduction . 324
Other Number Systems . 324
Incrementing and Decrementing 325

The INC Statement . 325
The DEC Statement . 325

Shift Operators . 326
The Shift Left Operator (<<) 327
The Shift Right Operator (>>) 327

Bitwise Boolean Operators . 328
The Bitwise NOT Operator (..) 328
The Bitwise AND Operator (&&) 329
The Bitwise OR Operator (||) 330
The Bitwise Exclusive OR Operator (~~) 331
A Practical Use For Bitwise Operations 331

Summary . 334

Solutions . 335

Chapter 13 Bitmaps

Bitmaps Basics . 340
Introduction . 340
Colour Palette . 341
File Size . 341
File Formats . 341

Bitmaps in DarkBASIC Pro . 342
Introduction . 342

The LOAD BITMAP Statement 342
The BITMAP WIDTH Statement 344
The BITMAP HEIGHT Statement 344
The BITMAP DEPTH Statement 345
The SET CURRENT BITMAP Statement 345
The CREATE BITMAP Statement 346
The COPY BITMAP Statement 347
The FLIP BITMAP Statement 348
The MIRROR BITMAP Statement 349
The BLUR BITMAP Statement 350
The FADE BITMAP Statement 351

Copying Only Part of a Bitmap . 352
The COPY BITMAP Statement - Version 2 352
Zooming . 355

Bitmap Status . 356
The BITMAP EXIST Statement 356
The BITMAP MIRRORED Statement 356
The BITMAP FLIPPED Statement 357
The CURRENT BITMAP Statement 357
The DELETE BITMAP Statement 357

Placing More than One Image in the Same Area 358
Summary . 359

Solutions . 361

Chapter 14 Video Cards and the Screen

Video Cards and the Screen . 364
Introduction . 364
Your Screen . 364

The PERFORM CHECKLIST FOR DISPLAY MODES Statement 364
The CHECKLIST QUANTITY Statement 364
The CHECKLIST STRING$ Statement 365
The CHECKLIST VALUE Statement 366
The EMPTY CHECKLIST Statement 366
The CHECK DISPLAY MODE Statement 367

The SCREEN FPS Statement 368
The SCREEN INVALID Statement 369

Your Graphics Card . 370
The PERFORM CHECKLIST FOR GRAPHICS CARDS Statement . . 370
The SET GRAPHICS CARD Statement 370
The CURRENT GRAPHICS CARD$ Statement 371
The SCREEN TYPE Statement 371
The SET GAMMA Statement 372

Using a Window . 373
The SET WINDOW ON Statement 373
The SET WINDOW SIZE Statement 373
The SET WINDOW POSITION Statement 373
The SET WINDOW LAYOUT Statement 374
The SET WINDOW TITLE Statement 374
The HIDE WINDOW Statement 375
The SHOW WINDOW Statement 376

Summary . 376
Solutions . 378

Chapter 15 File Handling

Files . 380
Introduction . 380
Disk Housekeeping Statements 380

The DRIVELIST Statement 380
The GET DIR$ Statement . 381
The CD Statement . 381
The SET DIR Statement . 382
The PATH EXIST Statement 383
The MAKE DIRECTORY Statement 383
The DELETE DIRECTORY Statement 384
The DIR Statement . 385
The DELETE FILE Statement 385
The COPY FILE Statement 385
The MOVE FILE Statement 386
The FILE EXIST Statement 387
The RENAME FILE Statement 387
The EXECUTE FILE Statement 388
The FIND FIRST Statement 389
The FIND NEXT Statement 389
The GET FILE NAME$ Statement 389
The GET FILE DATE$ Statement 390
The GET FILE CREATION$ Statement 390
The GET FILE TYPE Statement 390
The FILE SIZE Statement . 392
The WINDIR$ Statement . 392

The APPNAME$ Statement 392
Using Data Files . 393

The OPEN TO WRITE Statement 393
The WRITE Statement . 394
The CLOSE FILE Statement 394
The WRITE FILE Statement 397
The OPEN TO READ Statement 397
The READ Statement . 398
The READ FILE Statement 399

Random Access and File Updating 400
The SKIP BYTES Statement 400
The READ BYTE FROM FILE Statement 401
The WRITE BYTE TO FILE Statement 402

Pack Files . 403
The WRITE FILEBLOCK Statement 403
The WRITE DIRBLOCK Statement 404
The READ FILEBLOCK Statement 405
The READ DIRBLOCK Statement 406

Creating an Empty File . 407
The MAKE FILE Statement 407

Arrays and Files . 408
The SAVE ARRAY Statement 408
The LOAD ARRAY Statement 409

Checklists . 410
The PERFORM CHECKLIST FOR DRIVES Statement 410
The PERFORM CHECKLIST FOR FILES Statement 410

Summary . 411
Writing to a Data File . 412
Reading from a Data File . 412
Random Access . 412
Pack Files . 412
Arrays and Files . 413
Checklists . 413

Solutions . 414

Chapter 16 Handling Music Files

Handling Music Files . 420
Introduction . 420
Playing a Sound File . 420

The LOAD MUSIC Statement 420
The PLAY MUSIC Statement 421
The LOOP MUSIC Statement 421
The PAUSE MUSIC Statement 422
The RESUME MUSIC Statement 422
The STOP MUSIC Statement 423

The SET MUSIC SPEED Statement 423
The SET MUSIC VOLUME Statement 424
The DELETE MUSIC Statement 424

Retrieving Music File Data . 425
The MUSIC EXIST Statement 425
The MUSIC PLAYING Statement 425
The MUSIC LOOPING Statement 426
The MUSIC PAUSED Statement 426
The MUSIC VOLUME Statement 427
The MUSIC SPEED Statement 428

Playing Multiple Music Files . 429
Summary . 429

Playing CDs . 431
Introduction . 431
CD Control Statements . 431

The LOAD CDMUSIC Statement 431
The GET NUMBER OF CD TRACKS Statement 432

Summary . 433
Solutions . 434

Chapter 17 Displaying Video Files

Displaying Video Files . 436
Introduction . 436
Playing Video Files . 436

The LOAD ANIMATION Statement 436
The PLAY ANIMATION Statement 437
The LOOP ANIMATION Statement 439
The PAUSE ANIMATION Statement 440
The RESUME ANIMATION Statement 441
The STOP ANIMATION Statement 441
The PLACE ANIMATION Statement 442
The SET ANIMATION SPEED Statement 443
The SET ANIMATION VOLUME Statement 444
The DELETE ANIMATION Statement 444

Retrieving Video Data . 444
The ANIMATION EXIST Statement 444
The ANIMATION POSITION Statement 445
The ANIMATION WIDTH Statement 446
The ANIMATION HEIGHT Statement 446
The ANIMATION PLAYING Statement 447
The ANIMATION LOOPING Statement 447
The ANIMATION PAUSED Statement 447
The ANIMATION VOLUME Statement 449
The ANIMATION SPEED Statement 449

Playing Multiple Videos . 450

Playing Sound . 450
Summary . 450

Playing DVDs . 452
Introduction . 452
DVD Handling Statements . 452

The LOAD DVD ANIMATION Statement 452
The TOTAL DVD CHAPTERS Statement 452
The SET DVD CHAPTER Statement 453

A Sample Program . 453
Summary . 454

Solutions . 455

Chapter 18 Accessing the Keyboard

Accessing the Keyboard . 458
Introduction . 458
Reading a Key . 458

The INKEY$ Statement . 458
Checking the Arrow Keys . 460

The UPKEY Statement . 460
The DOWNKEY Statement 460
The LEFTKEY Statement . 461
The RIGHTKEY Statement 461

Checking For Other Special Keys 461
Scan Codes . 462

The SCANCODE Statement 462
The KEYSTATE Statement 463
The ENTRY$ Statement . 466
The CLEAR ENTRY BUFFER Statement 467
The SUSPEND FOR KEY Statement 467

Summary . 468
Solutions . 469

Chapter 19 Mathematical Functions

Mathematical Functions . 472
Introduction . 472
Coordinates . 472
Mathematical Functions in DarkBASIC Pro 473

The COS Statement . 473
The SIN Statement . 475
Dealing with Longer Lines . 476
The SQRT Statement . 476
The ACOS Statement . 477
The ASIN Statement . 478
The TAN Statement . 478

The ATAN Statement . 479
The WRAPVALUE Statement 481

Other Mathematical Functions . 481
The ABS Statement . 481
The INT Statement . 482
The EXP Statement . 483
The HCOS Statement . 483
The HSIN Statement . 483
The HTAN Statement . 484

Summary . 484
Solutions . 486

Chapter 20 Images

Images . 488
Introduction . 488
Image Handling Statements . 488

The LOAD IMAGE Statement 488
The PASTE IMAGE Statement 489
The SET IMAGE COLORKEY Statement 490
The SAVE IMAGE Statement 490
The DELETE IMAGE Statement 491
The GET IMAGE Statement 492
The IMAGE EXIST Statement 493

Summary . 493
Solutions . 494

Chapter 21 Sprites1

Creating and Moving Sprites . 496
Introduction . 496
Loading a Sprite Image . 496

The SPRITE Statement . 496
Translating a Sprite . 498

The PASTE SPRITE Statement 498
The MOVE SPRITE Statement 499
The ROTATE SPRITE Statement 500

How MOVE SPRITE Operates . 502
Moving a Sprite�s Origin . 503

The OFFSET SPRITE Statement 503
Sprite Reflection . 505

The MIRROR SPRITE Statement 505
The FLIP SPRITE Statement 506
Reflecting a Tilted Sprite . 507

Sprite Background Transparency 507
Giving the User Control of a Sprite 508

Vertical Movement . 508
Horizontal Movement . 508
Rotational Movement . 509
Free Movement . 510
Restricting Sprite Movement 511
Storing the Position of the Sprite in a Record 512

Velocity . 512
Sprites and the PRINT Statement 521
Summary . 522

Solutions . 523

Chapter 22 Sprites 2

Changing a Sprite�s Appearance . 528
Introduction . 528
Resizing Sprites . 528

The SCALE SPRITE Statement 528
The STRETCH SPRITE Statement 529
The SIZE SPRITE Statement 530

Changing Transparency and Colour Brightness 530
The SET SPRITE ALPHA Statement 530
The SET SPRITE DIFFUSE Statement 531

Showing and Hiding Sprites . 532
The HIDE SPRITE Statement 532
The SHOW SPRITE Statement 533
The HIDE ALL SPRITES Statement 533
The SHOW ALL SPRITES Statement 533

Duplicating a Sprite . 533
The CLONE SPRITE Statement 533

Summary . 534
Adding a Background . 536

Introduction . 536
Ways to Change the Background 536

The COLOR BACKDROP Statement 536
The BACKDROP ON Statement 536
The BACKDROP OFF Statement 537
Using a Sprite as a BackGround 537
Sprite Order . 538
The SET SPRITE PRIORITY Statement 538
The SET SPRITE TEXTURE COORD Statement 539
The SET SPRITE Statement 542

Summary . 543
Retrieving Data About Sprites . 544

Introduction . 544
Sprite Data Retrieval Statements 544

The SPRITE EXIST Statement 544

The SPRITE X Statement . 544
The SPRITE Y Statement . 544
The SPRITE ANGLE Statement 545
The SPRITE OFFSET X Statement 545
The SPRITE OFFSET Y Statement 546
The SPRITE SCALE X Statement 546
The SPRITE SCALE Y Statement 546
The SPRITE WIDTH Statement 547
The SPRITE HEIGHT Statement 547
The SPRITE MIRRORED Statement 547
The SPRITE FLIPPED Statement 548
The SPRITE VISIBLE Statement 548
The SPRITE ALPHA Statement 548
The SPRITE RED Statement 549
The SPRITE GREEN Statement 549
The SPRITE BLUE Statement 549

Summary . 550
Sprite Collision . 551

Introduction . 551
Dealing With Sprite Collisions . 551

The SPRITE HIT Statement 551
The SPRITE COLLISION Statement 553

A Basic Bat and Ball Game . 553
Firing Projectiles . 555

The DELETE SPRITE Statement 555
The Missile Game . 556
Extending the Game . 558
The SET SPRITE IMAGE Statement 559
The SPRITE IMAGE Statement 560

Updating the Screen . 562
The SYNC ON Statement . 562
The SYNC Statement . 562
The SYNC OFF Statement 563
The SYNC RATE Statement 563
The FASTSYNC Statement 564

Summary . 564
Solutions . 565

Chapter 23 Animated Sprites

Animated Sprites . 572
Introduction . 572
Setting Up the Sprite . 572

The CREATE ANIMATED SPRITE Statement 572
The SET SPRITE FRAME Statement 573
The SPRITE FRAME Statement 574

A Simple Dice Game . 575
Creating a Sprite that Really is Animated 578

The PLAY SPRITE Statement 578
Changing the Transparent Colour 579
Moving the Sprite . 580
Varying the Velocity . 581
Multiple Asteroids . 582

Controlling the Spaceship . 584
The HandleKeyboard() Function 584
The HandleShip() Function 585
The LaunchMissile() Function 588
The HandleMissiles() Routine 590

Adding the Asteroids . 591
Summary . 593

Solutions . 595

Chapter 24 Sound

Mono and Stereo Sound . 604
Introduction . 604
The Basics of Loading and Playing Sounds 604

The LOAD SOUND Statement 604
The PLAY SOUND Statement 604
The LOOP SOUND Statement 606
The PAUSE SOUND Statement 607
The RESUME SOUND Statement 607
The STOP SOUND Statement 608
The SET SOUND SPEED Statement 608
The SET SOUND VOLUME Statement 609
The CLONE SOUND Statement 609
The DELETE SOUND Statement 610

Recording Sound . 611
The RECORD SOUND Statement 611
The STOP RECORDING SOUND Statement 611
The SAVE SOUND Statement 612

Retrieving Sound File Data . 613
The SOUND EXIST Statement 613
The SOUND PLAYING Statement 613
The SOUND LOOPING Statement 614
The SOUND PAUSED Statement 614
The SOUND VOLUME Statement 616
The SOUND SPEED Statement 616

Moving a Sound . 617
The SET SOUND PAN Statement 617
The SOUND PAN Statement 617

Playing Multiple Sound Files . 618

Summary . 618
3D Sound Effects . 620

Introduction . 620
Loading and Playing 3D Sounds 621

The LOAD 3DSOUND Statement 621
The POSITION SOUND Statement 621

Controlling the Listener . 622
The POSITION LISTENER Statement 622
The ROTATE LISTENER Statement 623
The SCALE LISTENER Statement 623

Retrieving Data on 3D Sounds and the Listener 624
The SOUND POSITION X Statement 624
The SOUND POSITION Y Statement 624
The SOUND POSITION Z Statement 624
The LISTENER POSITION X Statement 625
The LISTENER POSITION Y Statement 625
The LISTENER POSITION Z Statement 625
The LISTENER ANGLE X Statement 625
The LISTENER ANGLE Y Statement 625
The LISTENER ANGLE Z Statement 626

Summary . 626
Solutions . 628

Chapter 25 2D Vectors

2D Vectors . 632
Introduction . 632

A Mathematical Description of Vectors 632
Vectors in DarkBASIC Pro . 633

Creating a 2D Vector . 633
The MAKE VECTOR2 Statement 633
The SET VECTOR2 Statement 634
The X VECTOR2 Statement 635
The Y VECTOR2 Statement 635
The DELETE VECTOR2 Statement 636
The COPY VECTOR2 Statement 637
The MULTIPLY VECTOR2 Statement 638
The SCALE VECTOR2 Statement 638
The DIVIDE VECTOR2 Statement 639
The LENGTH VECTOR2 Statement 639
The SQUARED LENGTH VECTOR2 Statement 640
The ADD VECTOR2 Statement 640
The SUBTRACT VECTOR2 Statement 643
The DOT PRODUCT VECTOR2 Statement 644
The IS EQUAL VECTOR2 Statement 645
The MAXIMIZE VECTOR2 Statement 646

The MINIMIZE VECTOR2 Statement 647
Summary . 648

In Mathematics . 648
In Geometry . 648
In DarkBASIC Pro . 648

Solutions . 650

Chapter 26 Space Duel

Creating a Two-Player Game . 652
Introduction . 652
The Rules of the Game . 652

Winning . 652
Basic Play . 652
Controls . 652

The Screen Layout . 652
Game Data . 653
Game Logic . 654
Game Documentation . 654
Coding the Program . 659

Adding InitialiseGame() . 660
Adding HandleKeyboard() . 662
Adding HandleShip() . 662
Adding HandleMissiles() . 664
Adding GameOver() . 665

Space Duel - A Program Listing . 666
Solutions . 672

Chapter 27 Using the Mouse

Controlling the Mouse . 678
Introduction . 678
Waiting for a Mouse Click . 678

The WAIT MOUSE Statement 678
The SUSPEND FOR MOUSE Statement 678
The MOUSECLICK Statement 678

The Mouse Pointer . 680
The HIDE MOUSE Statement 680
The SHOW MOUSE Statement 680
The POSITION MOUSE Statement 681
The CHANGE MOUSE Statement 681

Reading the Mouse Position . 683
The MOUSEX Statement . 683
The MOUSEY Statement . 683

Mouse Speed . 684
The MOUSEMOVEX Statement 684

The MOUSEMOVEY Statement 684
The Mouse Wheel . 685

The MOUSEZ Statement . 685
The MOUSEMOVEZ Statement 686

Summary . 687
Mouse Handling Techniques . 688

Rollovers . 688
A Second Approach . 689

Clicking On-Screen Buttons . 690
Basic Concept . 690
Reacting to a Button Click . 691
Controlling Program Flow . 693

Summary . 694
Solutions . 695

Chapter 28 Pelmanism

The Game of Pelmanism . 698
Rules . 698
The Screen Layout . 698
Game Data . 699

Constants . 699
Structures Defined . 699
Global Variables . 699

Game Logic . 700
The Program Code . 700

Getting Started . 700
Adding InitialiseGame() . 701
Adding HandleMouse() . 703
Adding GameOver() . 706

Pelmanism - Program Listing . 707
Solutions . 713

Chapter 29 Using a Joystick

Using a Joystick . 716
Introduction . 716
Checking the System for a Joystick 716

The PERFORM CHECKLIST FOR CONTROL DEVICES Statement . 716
Reading the Position of the Joystick 717

The JOYSTICK Direction Statement 717
The JOYSTICK Position Statement 718

Joystick Controls . 721
The JOYSTICK FIRE Statement 721
The JOYSTICK FIRE X Statement 722
The JOYSTICK SLIDER Statement 723

The JOYSTICK TWIST Statement 723
The JOYSTICK HAT ANGLE Statement 724

Feedback Effects . 725
The FORCE Direction Statement 726
The FORCE ANGLE Statement 727
The FORCE NO EFFECT Statement 728
The FORCE AUTO CENTER Statement 728
The FORCE WATER EFFECT Statement 728
The FORCE CHAINSAW Statement 729
The FORCE SHOOT Statement 730
The FORCE IMPACT Statement 731

Summary . 731
A Joystick-Based Game . 733

Introduction . 733
The Rules Of the Game . 733
The Screen Layout . 733
The Data . 733
Media Used . 734
The Program Code . 734

Adding InitialiseGame() . 735
Adding CreateAlien() . 736
Adding HandleJoystick() . 736
Adding CreateMissile() . 736
Adding HandleAlien() . 736
Adding WrapAlien() . 737
Adding HandleMissile() . 737

Solutions . 739
Appendix . 743

The ASCII Character Set . 743
Index . 744

Acknowledgements

I would like to thank all those who helped me prepare the final draft of this book.

In particular, Virginia Marshall who proof-read the original script and Michael Kerr

who did an excellent job of checking the technical contents.

Any errors that remain are probably due to the extra few paragraphs I added after

all the proof-reading was complete!

Thanks also to The Game Creators Ltd for producing an excellent piece of software

- DarkBASIC Professional - known as DarkBASIC Pro to its friends.

Finally, thank you to every one of you who has bought this book. Any constructive

comments would be most welcome.

Email me at alistair@digital-skills.co.uk.

Introduction
Welcome to a book that I hope is a little different from any other you've come across.
Instead of just telling you about software design and programming, it makes you

get involved. There's plenty of work for you to do since the book is full of exercises

- most of them programming exercises - but you also get a full set of solutions, just

in case you get stuck!

Learn by Doing

The only way to become a programming expert is to practice. No one ever learned

any skill by just reading about it! Hence, this is not a text book where you can just

sit back in a passive way and read from cover to cover whilst sitting in your favourite

chair. Rather it is designed as a teaching package in which you will do most of the

work.

The tasks embedded in the text are included to test your understanding of what has

gone before and as a method of helping you retain the knowledge you have gained.

It is therefore important that you tackle each task as you come to it. Also, many of

the programming exercises are referred to, or expanded, in later pages so it is

important that you are familar with the code concerned.

What You Need

You'll obviously need a PC and a copy of DarkBASIC Pro.

You don't need any experience of programming, but knowing your bits from your
bytes and understanding binary and hexadecimal number systems would be useful.

How to Get the Most out of this Text

Experience has shown that readers derive most benefit from this material by

approaching its study in an organised way. The following strategy for study is highly

recommended:

1. Read a chapter or section through without taking notes or worrying too

much about topics that are not immediately clear to you. This will give

you an overview of the contents of that chapter/section.

2. Re-read the chapter. This time take things slowly; make notes and

summaries of the material you are reading (even if you understand the

material, making notes helps to retain the facts in your long-term

memory); re-read any parts you are unclear about.

3. Embedded in the material are a series of activities. Do each task as you

reach it (on the second reading). These activities are designed to test

your knowledge and understanding of what has gone before. Do not be

tempted to skip over them, promise to come back to them later, or

to make only a half-hearted attempt at tackling them before looking up

the answer (there are solutions at the end of each chapter). Once you

have attempted a task, look at the solution given. Often there will be

important points emphasised in the solution which will aid higher

understanding.

4. As you progress through the book, go back and re-read earlier chapters,

since you will often get something new from them as your knowledge

increases.

Language Syntax Diagrams

The text contains many syntax diagrams which give a visual representation of the
format of various statements allowed in DarkBASIC Professional. These diagrams

make no attempt to be complete, but merely act as a guide to the format most likely

to be used. The accompanying text and example should highlight the more complex

options available. Below is a typical diagram:

Each tile in the diagram holds a token of the statement. Raised tiles represent fixed

terms in the statement, which must be entered exactly as shown. Sunken tiles

represent tokens whose exact value is decided by you, the programmer, but again
these values must conform to some stated rule.

Items enclosed in brackets may be omitted if not required. In this

example we can see that ELSE and all the terms that follow may be

omitted.

Where one or more tokens in a diagram may be repeated indefinitely,

this is shown using the arrowed line. This example shows that any
number of statements can be used so long as a colon appears between

each statement.

Occasionally, a single line of code will have to be printed over two or more lines

because of paper width restrictions; these lines are signified by aÄ symbol. Enter

these lines without a break when testing any of the programs in which they are used.

For example, the code

SPRITE crosshairs,(JOYSTICK X()+1000)*xpixels#,

Ä(JOYSTICK Y()+1000)*ypixels#,1

should be entered as a single line.

statement

statement

condition

statement

statement

conditionIF

:

:

THEN

ELSE

IF

:

:

THEN

ELSE

statementstatement

:

ELSE

:

ELSE

statementstatement

::

1

BooleanExpressions
DataVariables
DesigningAlgorithms

BooleanExpressions
DataVariables
DesigningAlgorithms

Boolean expressions
Data Variables
Designing Algorithms
Desk Checking
IF Control Structure
FOR Control Structure
REPEAT Control Structure
Stepwise Refinement
Testing
WHILE Control Structure

DarkBASIC Pro: Designing Algorithms 1

Designing Algorithms
Following Instructions

Activity 1.1

Carry out the following set of instructions in your head.

Think of a number between 1 and 10
Multiply that number by 9
Add up the individual digits of this new number
Subtract 5 from this total
Think of the letter at that position in the alphabet
Think of a country in Europe that starts with that letter
Think of a mammal that starts with the second letter of the country�s name
Think of the colour of that mammal

Congratulations! You’ve just become a human computer. You were given a set of

instructions which you have carried out (by the way, did you think of the colour
grey?).

That’s exactly what a computer does. You give it a set of instructions,the machine

carries out those instructions, and that is ALL a computer does. If some computers

seem to be able to do amazing things, that is only because someone has written an

amazingly clever set of instructions. A set of instructions designed to perform some

specific task is known as an algorithm.

There are a few points to note from the algorithm given above:

Ø There is one instruction per line

Ø Each instruction is unambiguous

Ø Each instruction is as short as possible

Activity 1.2

This time let’s see if you can devise your own algorithm.

The task you need to solve is to measure out exactly 4 litres of water. You

have two containers. Container A, if filled, will hold exactly 5 litres of water,

while container B will hold 3 litres of water. You have an unlimited supply of

water and a drain to get rid of any water you no longer need. It is not possible

to know how much water is in a container if you only partly fill it from the

supply.

If you managed to come up with a solution, see if you can find a second way

of measuring out the 4 litres.

As you can see, there are at least two ways to solve the problem given in Activity

1.2. Is one better than the other? Well, if we start by filling container A, the solution

needs less instructions, so that might be a good guideline at this point when choosing

which algorithm is best.

A B

2 DarkBASIC Pro: Designing Algorithms

However, the algorithms that a computer carries out are not written in English like

the instructions shown above, but in a more stylised form using a computer

programming language. DarkBASIC Pro is one such language. The set of program
language instructions which make up each algorithm is then known as a computer

program or software.

Just as we may perform a great diversity of tasks by following different sets of

instructions, so the computer can be made to carry out any task for which a program
exists.

Computer programs are normally copied (or loaded) from a magnetic disk into the

computer’s memory and then executed (or run). Execution of a program involves
the computer performing each instruction in the program one after the other. This

it does at impressively high rates, possibly exceeding 2,000 million (or 2 billion)

instructions per second (2,000 mips).

Depending on the program being run, the computer may act as a word processor, a
database, a spreadsheet, a game, a musical instrument or one of many other

possibilities. Of course, as a programmer, you are required to design and write

computer programs rather than use them. And, more specifically, our programs in

this text will be mainly games-related; an area of programming for which

DarkBASIC Pro has been specifically designed.

Activity 1.3

1. A set of instructions that performs a specific task is known as what?

2. What term is used to describe a set of instructions used by a computer?

3. The speed of a computer is measured in what units?

Control Structures

Although writing algorithms and programming computers are certainly

complicated tasks, there are only a few basic concepts and statements which you

need to master before you are ready to start producing software. Luckily, the

concepts are already familiar to you in everyday situations. If you examine any
algorithm, no matter how complex, you will find it consists of three basic structures:

Ø Sequence where one statement follows on from another.

Ø Selection where a choice is made between two or more alternative
actions.

Ø Iteration where one or more instructions are carried out over and
over again.

These are explained in detail over the next few pages. All that is needed is to
formalise the use of these structures within an algorithm. This formalisation better

matches the structure of a computer program.

Sequence

A set of instructions designed to be carried out one after another, beginning at the

first and continuing, without omitting any, until the final instruction is completed,

DarkBASIC Pro: Designing Algorithms 3

is known as a sequence. For example, instructions on how to play Monopoly might

begin with the sequence:

Choose your playing piece
Place your piece on the GO square
Get £1,500 from the bank

The set of instructions given earlier in Activity 1.1 is also an example of a sequence.

Activity 1.4

Re-arrange the following instructions to describe how to play a single shot

during a golf game:

Swing club forwards, attempting to hit ball
Take up correct stance beside ball
Grip club correctly
Swing club backwards
Choose club

Selection

Binary Selection

Often a group of instructions in an algorithm should only be carried out when certain

circumstances arise. For example, if we were playing a simple game with a young

child in which we hide a sweet in one hand and allow the child to have the sweet

if she can guess which hand the sweet is in, then we might explain the core idea

with an instruction such as

Give the sweet to the child if the child guesses which hand the sweet is in

Notice that when we write a sentence containing the word IF, it consists of two main

components:

a condition : the child guesses which hand the sweet is in

and

a command : give the sweet to the child

A condition (also known as a Boolean expression) is a statement that is either true

or false. The command given in the statement is only carried out if the condition is

true and hence this type of instruction is known as an IF statement and the command

as a conditional instruction. Although we could rewrite the above instruction in

many different ways, when we produce a set of instructions in a formal manner, as
we are required to do when writing algorithms, then we use a specific layout as

shown in FIG-1.1 always beginning with the word IF.

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;

THEN, which separates the condition from the command; and finally, ENDIF which

marks the end of the instruction.

FIG-1.1

The IF Statement
IF THEN

ENDIF

condition
command

If is true ...condition

..then is carried outcommand

If is not true,
then is ignored

condition
command

4 DarkBASIC Pro: Designing Algorithms

The indentation of the command is important since it helps our eye grasp the

structure of our instructions. Appropriate indentation is particularly valuable in

aiding readability once an algorithm becomes long and complex. Using this layout,
the instruction for our game with the child would be written as:

IF the child guesses which hand the sweet is in THEN
Give the sweet to the child

ENDIF

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe a turn as:

IF you can make a word THEN
Add the word to the board
Work out the points gained
Add the points to your total
Select more letter tiles

ENDIF

Of course, the conditional statement will almost certainly appear in a longer
sequence of instructions. For example, the instructions for playing our guessing

game with the young child may be given as:

Hide a sweet in one hand
Ask the child to guess which hand contains the sweet
IF the child guesses which hand the sweet is in THEN

Give the sweet to the child
ENDIF
Ask the child if they would like to play again

This longer sequence of instructions highlights the usefulness of the term ENDIF

in separating the conditional command, Give the sweet to the child, from subsequent

unconditional instructions, in this case, Ask the child if they would like to play again.

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1

and 100, then Player 2 makes a single attempt at guessing the number. Player

1 responds to a correct guess by saying Correct. The game is then complete

and Player 1 states the value of the number.

Write the set of instructions necessary to play the game.

In your solution, include the statements:

Player 1 says �Correct�
Player 1 thinks of a number
IF guess matches number THEN

The IF structure is also used in an extended form to offer a choice between two

alternative actions. This expanded form of the IF statement includes another formal
term, ELSE, and a second command. If the condition specified in the IF statement

is true, then the command following the term THEN is executed, otherwise that

following ELSE is carried out.

For instance, in our earlier example of playing a guessing game with a child, nothing

happened if the child guessed wrongly. If the person holding the sweet were to eat

it when the child’s guess was incorrect, we could describe this setup with the

following statement:

DarkBASIC Pro: Designing Algorithms 5

IF the child guesses which hand the sweet is in THEN
Give the sweet to the child

ELSE
Eat sweet yourself

ENDIF

The general form of this extended IF statement is shown in FIG-1.2.

Activity 1.6

Write an IF statement containing an ELSE section which describes the

alternative actions to be taken when playing Hangman and the player trying to

guess the word suggests a letter.

In the solution include the statements:
Add letter at appropriate position(s)
Add part to hanged man

Choosing between two alternative actions is called binary selection.

When we have several independent selections to make, then we may use several IF

statements. For example, when playing Monopoly, we may buy any unpurchased
property we land on. In addition, we get another turn if we throw a double. This

part of the game might be described using the following statements:

Throw the dice
Move your piece forward by the number indicated
IF you land on an unpurchased property THEN

Buy the property
ENDIF
IF you threw doubles THEN

Throw the dice again
ELSE

Hand the dice to the next player
ENDIF

Multi-way Selection

Although a single IF statement can be used to select one of two alternative actions,

sometimes we need to choose between more than two alternatives (known as
multi-way selection). For example, imagine that the rules of the simple guessing

game mentioned in Activity 1.5 are changed so that there are three possible

responses to Player 2’s guess; these being:

Ø Correct

Ø Too low

Ø Too high

One way to create an algorithm that describes this situation is just to employ three

separate IF statements:

FIG-1.2

The IF ... ELSE Statement

IF THEN

ELSE

ENDIF

condition
command 1

command 2

If is true ...condition

If is not true ...condition

..then is carried outcommand 1

..then is carried outcommand 2

This set of instructions is not

complete and is shown here

only to illustrate the use of

multiple IF statements in an

algorithm.

6 DarkBASIC Pro: Designing Algorithms

IF the guess is equal to the number you thought of THEN
Say �Correct�

ENDIF
IF the guess is lower than the number you thought of THEN

Say �Too low�
ENDIF
IF the guess is higher than the number you thought of THEN

Say �Too high�
ENDIF

This will work, but would not be considered a good design for an algorithm since,
when the first IF statement is true, we still go on and check if the conditions in the

second and third IF statements are true. After all, only one of the three conditions

can be true at any one time.

Where only one of the conditions being considered can be true at a given moment
in time, these conditions are known as mutually exclusive conditions.

The most effective way to deal with mutually exclusive conditions is to check for

one condition, and only if this is not true, are the other conditions tested. So, for

example, in our algorithm for guessing the number, we might begin by writing:

IF guess matches number THEN
Say �Correct�

ELSE
Check the other conditions

ENDIF

Of course a statement like ***Check the other conditions*** is too vague to be
much use in an algorithm (hence the asterisks). But what are these other conditions?

They are the guess is lower than the number you thought of and the guess is higher

than the number you thought of.

We already know how to handle a situation where there are only two alternatives:
use an IF statement. So we can chose between Too low and Too high with the

statement

IF guess is less than number THEN
Say �Too low�

ELSE
Say �Too high�

ENDIF

Now, by replacing the phrase ***Check the other conditions*** in our original

algorithm with our new IF statement we get:

IF guess matches number THEN
Say �Correct"

ELSE
IF guess is less than number THEN

Say �Too low"
ELSE

Say �Too high�
ENDIF

ENDIF

Notice that the second IF statement is now totally contained within the ELSE section

of the first IF statement. This situation is known as nested IF statements. Where

there are even more mutually exclusive alternatives, several IF statements may be

nested in this way. However, in most cases, we’re not likely to need more than two

nested IF statements.

DarkBASIC Pro: Designing Algorithms 7

Activity 1.7

In an old TV programme called The Golden Shot, contestants had to direct a

crossbow in order to shoot an apple. The player sat at home and directed the

crossbow controller via the phone. Directions were limited to the following

phrases: up a bit, down a bit, left a bit, right a bit, and fire.

Write a set of nested IF statements that determine which of the above

statements should be issued. Use statements such as:

IF the crossbow is pointing too high THEN
and

Say �Left a bit�

As you can see from the solution to Activity 1.7, although nested IF statements get

the job done, the general structure can be rather difficult to follow. A better method

would be to change the format of the IF statement so that several, mutually

exclusive, conditions can be declared in a single IF statement along with the action

required for each of these conditions. This would allow us to rewrite the solution
to Activity 1.7 as:

IF
crossbow is too high:

Say �Down a bit�
crossbow is too low:

Say �Up a bit�
crossbow is too far right:

Say �Left a bit�
crossbow is too far left:

Say � Right a bit�
crossbow is on target:

Say �Fire�
ENDIF

Each option is explicitly named (ending with a colon) and only the one which is
true will be carried out, the others will be ignored.

Of course, we are not limited to merely five options; there can be as many as the

situation requires.

When producing a program for a computer, all possibilities have to be taken into

account. Early adventure games, which were text based, allowed the player to type

a command such as Go East, Go West, Go North, Go South and this moved the

player’s character to new positions in the imaginary world of the computer program.
If the player typed in an unrecognised command such as Go North-East or Move

faster, then the game would issue an error message. This setup can be described by

adding an ELSE section to the structure as shown below:

IF
command is Go East:

Move player�s character eastward
command is Go West:

Move player�s character westward
command is Go North:

Move player�s character northward
command is Go South:

Move player�s character southward
ELSE

Display an error message
ENDIF

8 DarkBASIC Pro: Designing Algorithms

The additional ELSE option will be chosen only if none of the other options are

applicable. In other words, it acts like a catch-all, handling all the possibilities not

explicitly mentioned in the earlier conditions.

This gives us the final form of this style of the IF statement as shown in FIG-1.3:

Activity 1.8

In the TV game Wheel of Fortune (where you have to guess a well-known

phrase), you can, on your turn, either guess a consonant, buy a vowel, or make

a guess at the whole phrase.

If you know the phrase, you should make a guess at what it is; if there are
still many unseen letters, you should guess a consonant; as a last resort you

can buy a vowel.

Write an IF statement in the style given above describing how to choose from

the three options.

Complex Conditions

Often the condition given in an IF statement may be a complex one. For example,
in the TV game Family Fortunes, you only win the star prize if you get 200 points

and guess the most popular answers to a series of questions. This can be described

in our more formal style as:

IF at least 200 points gained AND all most popular answers have been guessed THEN
winning team get the star prize

ENDIF

The AND Operator

Note the use of the word AND in the above example. AND (called a Boolean

operator) is one of the terms used to link simple conditions in order to produce a

more complex one (known as a complex condition). The conditions on either side

of the AND are called the operands. Both operands must be true for the overall result

to be true. We can generalise this to describe the AND operator as being used in the

form:

condition 1 AND condition 2

FIG-1.3

The Third Version of the

IF Statement

IF

ELSE

ENDIF

condition 1:
command 1

condition 2:
command 2

command x

If is true ...condition 1

If none of the condition
given above are true ...

As many conditions and
commands as required can

be added

If is true ...condition 2

... then
is carried out

command 1

... then
is carried out

command X

... then
is carried out

command 2

DarkBASIC Pro: Designing Algorithms 9

The result of the AND operator is determined using the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF both conditions are true THEN

the overall result is true
ELSE

the overall result is false
ENDIF

For example, if we assume the group reaching the final of the game show Family

Fortunes has amassed 230 points but have not guessed all of the most popular

answers, then a computer would determine the overall result of the IF statement

given earlier as shown in FIG-1.4.

With two conditions there are four possible combinations. The first possibility is

that both conditions are false; another possibility is that condition 1 is false but

condition 2 is true.

Activity 1.9

What are the other two possible combinations of true and false?

The results of the AND operator are summarised in TABLE-1.1.

Activity 1.10

In the card game Snap, you win the cards on the table if you are first to place

your hand over those cards, and the last two cards laid down are of the same

value.

Write an IF statement, which includes the term AND, summarising this

situation.

The OR Operator

Simple conditions may also be linked by the Boolean OR operator. Using OR, only

one of the conditions needs to be true in order to carry out the action that follows.
For example, in the game of Monopoly you go to jail if you land on the GoTo Jail

TABLE-1.1

The AND Operator

FIG-1.4

Calculating the Result

of an AND Operation

IF AND THENat least 200 points gained all most popular answers have been guessed

This condition is true This condition is false

IF AND THENtrue false

IF THENfalse

giving

reduces to

condition 1 condition 2 condition 1 AND condition 2

false false false
false true false
true false false
true true true

10 DarkBASIC Pro: Designing Algorithms

square or if you throw three doubles in a row. This can be written as:

IF player lands on Go To Jail OR player has thrown 3 pairs in a row THEN
PIayer goes to jail

ENDIF

Like AND, the OR operator works on two operands:

condition 1 OR condition 2

When OR is used, only one of the conditions involved needs to be true for the overall

result to be true. Hence the results are determined by the following rules:

1. Determine the truth of condition 1
2. Determine the truth of condition 2
3. IF any of the conditions are true THEN

the overall result is true
ELSE

the overall result is false
ENDIF

For example, if a player in the game of Monopoly has not landed on the Go To Jail

square, but has thrown three consecutive pairs, then the result of the IF statement

given above would be determined as shown in FIG-1.5.

The results of the OR operator are summarised in TABLE-1.2.

Activity 1.11

In Monopoly, a player can get out of jail if he throws a double or pays a £50

fine.

Express this information in an IF statement which makes use of the OR

operator.

The NOT Operator

The final Boolean operator which can be used as part of a condition is NOT. This
operator is used to reverse the meaning of a condition. Hence, if property mortgaged

is true, then NOT property mortgaged is false.

FIG-1.5

Calculating the Result of

an OR Operation
IF OR THENplayer lands on player has thrown 3 pairs in a rowGo To Jail

This condition is false This condition is true

IF OR THENfalse true

IF THENtrue

giving

reduces to

TABLE-1.2

The OR Operator

condition 1 condition 2 condition 1 OR condition 2

false false false
false true true
true false true
true true true

DarkBASIC Pro: Designing Algorithms 11

Notice that the word NOT is always placed at the start of the condition and not

where it would appear in everyday English (property NOT mortgaged).

In Monopoly a player can charge rent on a property as long as that property is not

mortgaged. This situation can be described with the statement:

IF NOT property mortgaged THEN
Rent can be charged

ENDIF

The NOT operator works on a single operand:

NOT condition

When NOT is used, the result given by the original condition is reversed. Hence the

results are determined by the following rules:

1. Determine the truth of the condition
2. Complement the result obtained in step 1

For example, if a player lands on a property that is not mortgaged, then the result

of the IF statement given above would be determined as shown in FIG-1.6.

The results of the NOT operator are summarised in TABLE-1.3.

Complex conditions are not limited to a single occurrence of a Boolean operator,

hence it is valid to have statements such as:

IF player lands on Go To Jail OR player has thrown 3 pairs in a row OR
player lifts a Go To Jail card

THEN
Player goes to jail

ENDIF

Although us humans might be able to work all of this out in our heads without even

a conscious thought, computers deal with such complex conditions in a slow, but

methodical way.

To calculate the final result of the condition given above, the computer requires

several operations to be performed. These are performed in two stages:

1. Determine the truth of each condition
2. Determine the result of each OR operation, starting with the left-most OR

FIG-1.6

Calculating the Result of

a NOT Operation

IF NOT THENproperty mortgaged

This condition is false

IF NOT THENfalse

IF THENtrue

giving

reduces to

The original result, false,
is complemented by the

NOT operator

TABLE-1.3

The NOT Operator

condition NOT condition

false true
true false

12 DarkBASIC Pro: Designing Algorithms

For example, if a player lifts a Go To Jail card from the Chance pack, then the result

of the IF statement given above would be determined as shown in FIG-1.7.

That might seem a rather complicated way of achieving what was probably an
obvious result, but when the conditions become even more complex, this methodical

approach is necessary.

Notice that when a complex condition contains only a single Boolean operator type

(OR in the example above), that the expression is worked out from left to right.
However, should the condition contain a mixture of OR, AND and NOT operators,

NOT operations are performed first, ANDs second, and ORs last.

For example, if a game has the following rule

IF player has a magic sword AND player has magic armour OR
player has taken invisibility potion AND player possesses sleep spell
THEN

Player can kill dragon
ENDIF

and a player has magic armour and has drunk the invisibility potion, then to

determine if the player can kill the dragon, the process shown in FIG-1.8 is followed.

The final result shows that the player cannot kill the dragon.

FIG-1.7

Using More than One

OR Operator

IF THENplayer lands on OR player throws 3 pairs in a row OR player lifts a cardGo To Jail Go To Jail

This condition is false This condition is false This condition is true

IF OR OR THENfalse false true

IF OR THENfalse true

IF THENtrue

giving

reduces to

reduces to

FIG-1.8

AND Operators have

Priority

IF AND

OR AND THEN

player has a magic sword player has magic armour

player has taken invisibility potion player possesses sleep spell

This condition is false

This condition is falseThis condition is true

This condition is true

IF AND OR AND THENfalse true true false

IF OR AND THENfalse true false

IF OR THENfalse false

IF THENfalse

giving

reduces to

reduces to

reduces to

DarkBASIC Pro: Designing Algorithms 13

Activity 1.12

A game has the following rule:

IF a player has an Ace AND player has King OR player has two Knaves THEN
Player must pick up extra card

ENDIF

Using a similar approach to that shown in FIG-1.8 above, show the steps

involved in deciding if the player should take an extra card assuming the

player already has an Ace and one Knave.

Sometimes the priority of operators works against what we are trying to express.

For example, if a player receives a bonus if he lands on a red, green or blue square
after throwing 7 on a pair of dice, then we might be tempted to write:

IF landed on red OR landed on green OR landed on blue AND thrown 7 THEN
Add bonus to player�s score

ENDIF

We would not expect a player landing on a red square after throwing 9 to receive
the bonus. But, if we look at the calculation for such a situation, we get the result

shown in FIG-1.9 which means that the bonus is incorrectly added to the player’s

score.

To achieve the correct results, we need the OR operations to be performed first and
this can be done by giving the OR operators a higher priority than the AND.

Luckily, operator priority can be modified by using parentheses. Operations in

parentheses are always performed first. So, by rewriting our instruction as

IF (landed on red OR landed on green OR landed on blue) AND thrown 7 THEN
Add bonus to player�s score

ENDIF

the condition is calculated as shown in FIG-1.10.

FIG-1.9

How the Final Result is

Calculated
IF OR OR AND THENlanded on red landed on green landed on blue thrown 7

This condition is falseThis condition is false This condition is falseThis condition is true

IF OR OR AND THENtrue false false false

IF OR OR THENtrue false false

IF OR THENtrue false

IF THENtrue

giving

reduces to

reduces to

reduces to

14 DarkBASIC Pro: Designing Algorithms

Boolean operator priority is summarised in TABLE-1.4.

Activity 1.13

The rules for winning a card game are that your hand of 5 cards must add up
to exactly 43 (faces =10, Ace = 11) or you must have four cards of the same

value. In addition, a player cannot win unless he has a Queen in his hand.

Express these winning conditions as an IF statement.

Activity 1.14

1. Name the three types of control structures.

2. Another term for condition is what?

3. Name the two types of selection.

4. What does the term mutually exclusive conditions mean?

5. Give an example of a Boolean operator.

6. If the terms AND and OR are included in a single complex condition,

which of these operators will be performed first?

7. How can the order in which operations in a complex condition be changed?

FIG-1.10

Using Parentheses to

Modify Operator

Priority IF (OR OR) AND THENlanded on red landed on green landed on blue thrown 7

This condition is falseThis condition is false This condition is falseThis condition is true

IF (OR OR) AND THENtrue false false false

IF (OR) AND THENtrue false false

IF AND THENtrue false

IF THENfalse

giving

reduces to

reduces to

reduces to

The parentheses are removed
when their contents are reduced to

a single value

TABLE-1.4

Operator Priority

Priority Operator

1 ()
2 NOT
3 AND
4 OR

DarkBASIC Pro: Designing Algorithms 15

Iteration

There are certain circumstances in which it is necessary to perform the same

sequence of instructions several times. For example, let’s assume that a game
involves throwing a dice three times and adding up the total of the values thrown.

We could write instructions for such a game as follows:

Set the total to zero
Throw dice
Add dice value to total
Throw dice
Add dice value to total
Throw dice
Add dice value to total
Call out the value of total

You can see from the above that two instructions,

Throw dice
Add dice value to total

are carried out three times, once for each turn taken by the player. Not only does it
seem rather time-consuming to have to write the same pair of instructions three

times, but it would be even worse if the player had to throw the dice 10 times!

What is required is a way of showing that a section of the instructions is to be

repeated a fixed number of times. Carrying out one or more statements over and

over again is known as looping or iteration. The statement or statements that we

want to perform over and over again are known as the loop body.

Activity 1.15

What statements make up the loop body in our dice problem given above?

FOR..ENDFOR

When writing a formal algorithm in which we wish to repeat a set of statements a

specific number of times, we use a FOR..ENDFOR structure.

There are two parts to this statement. The first of these is placed just before the loop

body and in it we state how often we want the statements in the loop body to be
carried out. For the dice problem our statement would be:

FOR 3 times DO

Generalising, we can say this statement takes the form

FOR value times DO

where value would be some positive number.

Next come the statements that make up the loop body. These are indented:

FOR 3 times DO
Throw dice
Add dice value to total

Finally, to mark the fact that we have reached the end of the loop body statements

we add the word ENDFOR:

16 DarkBASIC Pro: Designing Algorithms

FOR 3 times DO
Throw dice
Add dice value to total

ENDFOR

Now we can rewrite our original algorithm as:

Set the total to zero
FOR 3 times DO

Throw dice
Add dice value to total

ENDFOR
Call out the value of total

The instructions between the terms FOR and ENDFOR are now carried out three

times.

Activity 1.16

If the player was required to throw the dice 10 times rather than 3, what

changes would we need to make to the algorithm?

If the player was required to call out the average of these 10 numbers, rather

than the total, show what other changes are required to the set of instructions.

We are free to place any statements we wish within the loop body. For example,

the last version of our number guessing game produced the following algorithm

Player 1 thinks of a number between 1 and 100
Player 2 makes an attempt at guessing the number
IF guess matches number THEN

Player 1 says �Correct"
ELSE

IF guess is less than number THEN
Player 1 says �Too low�

ELSE
Player 1 says �Too high�

ENDIF
ENDIF

player 2 would have more chance of winning if he were allowed several chances at

guessing player 1’s number. To allow several attempts at guessing the number, some

of the statements given above would have to be repeated.

Activity 1.17

What statements in the algorithm above need to be repeated?

To allow for 7 attempts our new algorithm becomes:

Player 1 thinks of a number between 1 and 100
FOR 7 times DO

Player 2 makes an attempt at guessing the number
IF guess matches number THEN

Player 1 says �Correct"
ELSE

IF guess is less than number THEN
Player 1 says �Too low�

ELSE
Player 1 says �Too high�

ENDIF
ENDIF

ENDFOR

Note that ENDFOR is

left-aligned with the

opening FOR statement.

You can find the average

of the 10 numbers by

dividing the final total by

10.

DarkBASIC Pro: Designing Algorithms 17

Activity 1.18

Can you see a practical problem with the algorithm?

If not, try playing the game a few times, playing exactly according to the

instructions in the algorithm.

Activity 1.19

During a lottery draw, two actions are performed exactly 6 times. These are:

Pick out ball
Call out number on the ball

Add a FOR loop to the above statements to create an algorithm for the lottery
draw process.

Occasionally, we may have to use a slightly different version of the FOR loop.
Imagine we are trying to write an algorithm explaining how to decide who goes first

in a game. In this game every player throws a dice and the player who throws the

highest value goes first. To describe this activity we know that each player does the

following task:

Player throws dice

But since we can’t know in advance how many players there will be, we write the

algorithm using the statement

FOR every player DO

to give the following algorithm

FOR every player DO
Throw dice

ENDFOR
Player with highest throw goes first

If we had to save the details of a game of chess with the intention of going back to

the game later, we might write:

FOR each piece on the board DO
Write down the name and position of the piece

ENDFOR

Activity 1.20

A game uses cards with images of warriors. At one point in the game the

player has to remove from his hand every card with an image of a knight. To

do this the player must look through every card and, if it is a knight, remove

the card.

Write down a set of instructions which performs the task described above.

Your solution should include the statements

FOR every card in player�s hand DO
and

IF card is a knight THEN

18 DarkBASIC Pro: Designing Algorithms

The general form of the FOR statement is shown in FIG-1.11.

Although the FOR loop allows us to perform a set of statements a specific number

of times, this statement is not always suitable for the problem we are trying to solve.
For example, in the guessing game we stated that the loop body was to be performed

7 times, but what if player 2 guesses the number after only three attempts? If we

were to follow the algorithm exactly (as a computer would), then we must make

four more guesses at the number even after we know the correct answer!

To solve this problem, we need another way of expressing looping which does not

commit us to a specific number of iterations.

REPEAT.. UNTIL

The REPEAT .. UNTIL statement allows us to specify that a set of statements should

be repeated until some condition becomes true, at which point iteration should

cease. The word REPEAT is placed at the start of the loop body and, at its end, we

add the UNTIL statement. The UNTIL statement also contains a condition, which,
when true, causes iteration to stop. This is known as the terminating (or exit)

condition. For example, we could use the REPEAT.. UNTIL structure rather than

the FOR loop in our guessing game algorithm. The new version would then be:

Player 1 thinks of a number between 1 and 100
REPEAT

Player 2 makes an attempt at guessing the number
IF guess matches number THEN

Player 1 says �Correct
ELSE

IF guess is less than number THEN
Player 1 says �Too low�

ELSE
Player 1 says �Too high�

ENDIF
ENDIF

UNTIL player 2 guesses correctly

We could also use the REPEAT..UNTIL loop to describe how a slot machine

(one-armed bandit) is played:

REPEAT
Put coin in machine
Pull handle
IF you win THEN

Collect winnings
ENDIF

UNTIL you want to stop

The general form of this structure is shown in FIG-1.12.

FIG-1.11

The FOR Loop

FOR DO

ENDFOR

expression

loop bodyTypical examples:
5 times

every item The statements which make
up the will be executed

a number of times as defined
within

loop body

expression

FIG-1.12

The REPEAT Loop

REPEAT

UNTIL

loop body

condition The statements
will be executed continuously

until is true

loop body

condition

DarkBASIC Pro: Designing Algorithms 19

The terminating condition may use the Boolean operators AND, OR and NOT as

well as parentheses, where necessary.

Activity 1.21

A one-armed bandit costs 50p per play. A player has several 50p pieces and is
determined to play until his coins are gone or until he wins at least £10.00.

Write an algorithm describing the steps in this game. The algorithm should

make use of the following statements:

Collect winnings
Place coin in machine
Pull arm
UNTIL all coins are gone OR winnings are at least £10.00

There is still a problem with our number-guessing game. By using a REPEAT ..

UNTIL loop we are allowing player 2 to have as many guesses as needed to

determine the correct number. That doesn’t lead to a very interesting game. Later

we’ll discover how we might solve this problem.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop,
is the WHILE .. ENDWHILE structure which has an entry condition at the start

of the loop.

The aim of the card game of Pontoon is to attempt to make the value of your cards

add up to 21 without going over that value. Each player is dealt two cards initially
but can repeatedly ask for more cards by saying “twist”. One player is designated

the dealer. The dealer must twist while his cards have a total value of less than 16.

So we might write the rules for the dealer as:

Calculate the sum of the initial two cards
REPEAT

Take another card
Add new card�s value to sum

UNTIL sum is greater than or equal to 16

But this solution implies that the dealer must take at least one card before deciding

to stop. Using the WHILE..ENDWHILE structure we could describe the logic as

Calculate sum of the initial two cards
WHILE sum is less than 16 DO

Take another card
Add new card�s value to sum

ENDWHILE

Now determining if the sum is less than 16 is performed before Take another card

instruction. If the dealer’s two cards already add up to 16 or more, then the Take

another card instruction will be ignored.

The general form of the WHILE.. ENDWHILE statement is shown in FIG-1.13.

FIG-1.13

The WHILE Loop

WHILE

ENDWHILE

condition

loop body

The statements
will be executed continuously

until is true

loop body

condition

If is false
when first tested, the loop body

will be skipped completely

condition

20 DarkBASIC Pro: Designing Algorithms

In what way does this differ from the REPEAT statement? There are two

differences:

Ø The condition is given at the beginning of the loop.

Ø Looping stops when the condition is false.

The main consequence of this is that it is possible to bypass the loop body of a

WHILE structure entirely without ever carrying out any of the instructions it

contains, whereas the loop body of a REPEAT structure will always be executed at

least once.

Activity 1.22

A game involves throwing two dice. If the two values thrown are not the
same, then the dice showing the lower value must be rolled again. This

process is continued until both dice show the same value.

Write a set of instructions to perform this game.

Your solution should contain the statements

Roll both dice
and

Choose dice with lower value

Activity 1.23

1. What is the meaning of the term iteration?

2. Name the three types of looping structures.

3. What type of loop structure should be used when looping needs to occur an

exact number of times?

4. What type of loop structure can bypass its loop body without ever executing

it?

5. What type of loop contains an exit condition?

Data

Almost every game requires the players to remember or record some facts and

figures. In our number guessing game described earlier, the players needed to

remember the original number and the guesses made; in Hangman the word being

guessed and the letters guessed so far must be remembered.

These examples introduce the need to process facts and figures (known as data).

Every computer game has to process data. This data may be the name of a character,

the speed of a missile, the strength of a blow, or some other factor.

Every item of data has two basic characteristics :

a name

and a value

DarkBASIC Pro: Designing Algorithms 21

The name of a data item is a description of the type of information it represents.

Hence character’s title, strength and charisma are names of data items; “Fred the

Invincible”, 3, and 9 are examples of the actual values which might be given to these
data items.

In programming, a data item is often referred to as a variable. This term arises from

the fact that, although the name assigned to a data item cannot change, its value may

vary. For example, the value assigned to a variable called lives remaining, will be
reduced if the player’s character is killed.

Activity 1.24

List the names of four data items that might be held about a player in a game

of Monopoly.

Operations on Data

There are four basic operations that a computer can do with data. These are:

Input

This involves being given a value for a data item. For example, in our

number-guessing game, the player who has thought of the original number is given

the value of the guess from the second player. When playing Noughts and Crosses

adding an X (or O) changes the set up on the board. When using a computer, any

value entered at the keyboard, or any movement or action dictated by a mouse or

joystick would be considered as data entry. This type of action is known as an input

operation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work

out how much change to give a player buying a property. If a character in an
adventure game is hit, points must be deducted from his strength value. This type

of instruction is referred to as a calculation operation.

Comparison

Often values have to be compared. For example, we need to compare the two

numbers in our guessing game to find out if they are the same. This is known as a

comparison operation.

Output

The final requirement is to communicate with others to give the result of some

calculation or comparison. For example, in the guessing game player 1

communicates with player 2 by saying either that the guess is Correct, Too high or

Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in a racing

game your speed and time will be displayed on the screen. This is called an output

operation.

22 DarkBASIC Pro: Designing Algorithms

Activity 1.25

Identify input, calculation, comparison and output operations when playing

Hangman

For example, the algorithm needs to compare the letter guessed by the player

with the letters in the word.

When describing a calculation, it is common to use arithmetic operator symbols

rather than English. Hence, instead of writing the word subtract we use the minus

sign (-). A summary of the operators available are given in TABLE-1.5.

Similarly, when we need to compare values, rather than use terms such as is less

than, we use the less than symbol (<). A summary of these relational operators is

given in TABLE-1.6.

As well as replacing the words used for arithmetic calculations and comparisons

with symbols, the term calculate or set is often replaced by the shorter but more

cryptic symbol := between the variable being assigned a value and the value itself.
Using this abbreviated form, the instruction:

Calculate time to complete course as distance divided by speed

becomes

time := distance / speed

Although the long-winded English form is more readable, this more cryptic style is

briefer and is much closer to the code used when programming a computer.

Below we compare the two methods of describing our guessing game; first in

English:

Player 1 thinks of a number between 1 and 100
REPEAT

Player 2 makes an attempt at guessing the number
IF guess matches number THEN

Player 1 says �Correct
ELSE

IF guess is less than number THEN
Player 1 says �Too low"

ELSE
Player 1 says �Too high�

ENDIF
ENDIF

UNTIL player 2 guesses correctly

TABLE-1.5

Mathematical Operators

TABLE-1.6

Relational Operators

English Symbol

Multiply *
Divide /
Add +
Subtract -

English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

DarkBASIC Pro: Designing Algorithms 23

Using some of the symbols described earlier, we can rewrite this as:

Player 1 thinks of a number between 1 and 100
REPEAT

Player 2 makes an attempt at guessing the number
IF guess = number THEN

Player 1 says �Correct
ELSE

IF guess < number THEN
Player 1 says �Too low"

ELSE
Player 1 says �Too high�

ENDIF
ENDIF

UNTIL guess = number

Activity 1.26

1. What are the two main characteristics of any data item?

2. When data is input, from where is its value obtained?

3. Give an example of a relational operator.

Levels of Detail

When we start to write an algorithm in English, one of the things we need to consider

is exactly how much detail should be included. For example, we might describe

how to record a programme on a video recorder as:

Put new tape in video
Set timer details

However, this lacks enough detail for anyone unfamiliar with the operation of the

machine. We could replace the first statement with:

Press the eject button
IF there is a tape in the machine THEN

Remove it
ENDIF
Place the new tape in the machine

and the second statement could be substituted by:

Switch to timer mode
Enter start time
Enter finish time
Select channel

This approach of starting with a less detailed sequence of instructions and then,

where necessary, replacing each of these with more detailed instructions can be used

to good effect when tackling long and complex problems.

By using this technique, we are defining the original problem as an equivalent

sequence of simpler tasks before going on to create a set of instructions to handle

each of these simpler problems. This divide-and-conquer strategy is known as

stepwise refinement. The following is a fully worked example of this technique:

Problem:

Describe how to make a cup of tea.

24 DarkBASIC Pro: Designing Algorithms

Outline Solution:

1. Fill kettle
2. Boil water
3. Put tea bag in teapot
4. Add boiling water to teapot
5. Wait 1 minute
6. Pour tea into cup
7. Add milk and sugar to taste

This is termed a LEVEL 1 solution.

As a guideline we should aim for a LEVEL 1 solution with between 5 and 12
instructions. Notice that each instruction has been numbered. This is merely to help

with identification during the stepwise refinement process.

Before going any further, we must assure ourselves that this is a correct and full

(though not detailed) description of all the steps required to tackle the original

problem. If we are not happy with the solution, then changes must be made before

going any further.

Next, we examine each statement in turn and determine if it should be described in
more detail. Where this is necessary, rewrite the statement to be dealt with, and

below it, give the more detailed version. For example. Fill kettle would be expanded

thus:

1. Fill kettle
1.1 Remove kettle lid
1.2 Put kettle under tap
1.3 Turn on tap
1.4 When kettle is full, turn off tap
1.5 Place lid back on kettle

The numbering of the new statement reflects that they are the detailed instructions

pertaining to statement 1. Also note that the number system is not a decimal fraction

so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,

1.9, 1.10, 1.11, etc.

It is important that these sets of more detailed instructions describe how to perform

only the original task being examined - they must achieve no more and no less.

Sometimes the detailed instructions will contain control structures such as IFs,

WHILEs or FORs. Where this is the case, the whole structure must be included in
the detailed instructions for that task.

Having satisfied ourselves that the breakdown is correct, we proceed to the next

statement from the original solution.

2. Boil water
2.1 Plug in kettle
2.2 Switch on power at socket
2.3 Switch on power at kettle
2.4 When water boils switch off kettle

The next two statements expand as follows:

3. Put tea bag in teapot
3.1 Remove lid from teapot
3.2 Add tea bag to teapot

4. Add boiling water to teapot
4.1 Take kettle over to teapot
4.2 Add required quantity of water from kettle to teapot

DarkBASIC Pro: Designing Algorithms 25

But not every statement from a level 1 solution needs to be expanded. In our case

there is no more detail to add to the statement

5. Wait 1 minute

and therefore, we leave it unchanged.

The last two statements expand as follows:

6. Pour tea into cup
6.1 Take teapot over to cup
6.2 Pour required quantity of tea from teapot into cup

7. Add milk and sugar as required
7.1 IF milk is required THEN
7.2 Add milk
7.3 ENDIF
7.4 IF sugar is required THEN
7.5 Add sugar
7.6 Stir tea
7.7 ENDIF

Notice that this last expansion (step 7) has introduced IF statements. Control
structures (i.e. IF, WHILE, FOR, etc.) can be introduced at any point in an

algorithm.

Finally, we can describe the solution to the original problem in more detail by

substituting the statements in our LEVEL 1 solution by their more detailed

equivalent:

1.1 Remove kettle lid
1.2 Put kettle under tap
1.3 Turn on tap
1.4 When kettle is full, turn off tap
1.5 Place lid back on kettle
2.1 Plug in kettle
2.2 Switch on power at socket
2.3 Switch on power at kettle
2.4 When water boils switch off kettle
3.1 Remove lid from teapot
3.2 Add tea bag to teapot
4.1 Take kettle over to teapot
4.2 Add required quantity of water from kettle to teapot
5. Wait 1 minute
6.1 Take teapot over to cup
6.2 Pour required quantity of tea from teapot into cup
7.1 IF milk is required THEN
7.2 Add milk
7.3 ENDIF
7.4 IF sugar is required THEN
7.5 Add sugar
7.6 Stir tea
7.7 ENDIF

This is a LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1

statements which were not given more detail (in this case, the statement Wait 1
minute).

For some more complex problems it may be necessary to repeat this process to more
levels before sufficient detail is achieved. That is, statements in LEVEL 2 may need

to be given more detail in a LEVEL 3 breakdown.

26 DarkBASIC Pro: Designing Algorithms

Activity 1.27

The game of battleships involves two players. Each player draws two 10 by 10

grids. Each of these have columns lettered A to J and rows numbered 1 to 10.

In the first grid each player marks squares in the first grid to mark the

position of warships. Ships are added as follows
1 aircraft carrier 4 squares

2 destroyers 3 squares each

3 cruisers 2 squares each

4 submarines 1 square each

The squares of each ship must be adjacent and must be vertical or horizontal.

The first player now calls out a grid reference. The second player responds to

the call by saying HIT or MISS. HIT is called if the grid reference corresponds

to a position of a ship. The first player then marks this result on his second

grid using an o to signify a miss and x for a hit (see diagram below).

If the first player achieves a HIT then he continues to call grid references until

MISS is called. In response to a HIT or MISS call the first player marks the

second grid at the reference called: 0 for a MISS, X for a HIT.

When the second player responds with MISS the first player’s turn is over,
and the second player has his turn.

The first player to eliminate all segments of the opponent’s ships is the

winner. However, each player must have an equal number of turns, and if both

sets of ships are eliminated in the same round the game is a draw.

The algorithm describing the task of one player is given in the instructions

below. Create a LEVEL 1 algorithm by assembling the lines in the correct

order, adding line numbers to the finished description.

Add ships to left grid
Call grid position(s)
REPEAT
Respond to other player�s call(s)
Draw grids
UNTIL there is a winner

continued on next page

A B C D E F G H I J A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

A A A A

C C

C C

S

D

D

D

C

C

S

S

S

O

O

X X X

O

D D D

Vessels are positioned
in the left-hand grid

Results of guesses are
placed in the right-hand grid

DarkBASIC Pro: Designing Algorithms 27

Activity 1.27 (continued)

To create a LEVEL 2 algorithm, some of the above lines will have to be

expanded to give more detail. More detailed instructions are given below for

the statements Call grid position(s) and Respond to other player’s call(s). By

reordering and numbering the lines below create LEVEL 2 details for these
two statements

UNTIL other player misses
Mark position in second grid with X
Get other player�s call
Get reply
Get reply
ENDIF
Call HIT
Call MISS
Mark position in second grid with 0
WHILE reply is HIT DO
Call grid reference
Call grid reference
IF other player�s call matches position of ship THEN
ENDWHILE
REPEAT
ELSE

Checking for Errors

Once we’ve created our algorithm we would like to make sure it is correct.

Unfortunately, there is no foolproof way to do this! But we can at least try to find
any errors or omissions in the set of instructions we have created.

We do this by going back to the original description of the task our algorithm is

attempting to solve. For example, let’s assume we want to check our number

guessing game algorithm. In the last version of the game we allowed the second

player to make as many guesses as required until he came up with the correct answer.

The first player responded to each guess by saying either “too low”, “too high” or

“correct”.

To check our algorithm for errors we must come up with typical values that might

be used when carrying out the set of instructions and those values should be chosen

so that each possible result is achieved at least once.

So, as well as making up values, we need to predict what response our algorithm

should give to each value used. Hence, if the first player thinks of the value 42 and

the second player guesses 75, then the first player will respond to the guess by saying

“Too high”.

Our set of test values must evoke each of the possible results from our algorithm.

One possible set of values and the responses are shown in TABLE-1.7.

TABLE-1.7

Test Data for the Number

Guessing Game Algorithm

Test Data Expected Results

number = 42
guess = 75 Says “Too high”
guess = 15 Says “Too low”
guess = 42 Says “Correct”

28 DarkBASIC Pro: Designing Algorithms

Once we’ve created test data, we need to work our way through the algorithm using

that test data and checking that we get the expected results. The algorithm for the

number game is shown below, this time with instruction numbers added.

1. Player 1 thinks of a number between 1 and 100
2. REPEAT
3. Player 2 makes an attempt at guessing the number
4. IF guess = number THEN
5. Player 1 says �Correct"
6. ELSE
7. IF guess < number THEN
8. Player 1 says �Too low�
9. ELSE
10. Player 1 says �Too high�
11. ENDIF
12. ENDIF
13. UNTIL guess = number

Next we create a new table (called a trace table) with the headings as shown in

FIG-1.14.

Now we work our way through the statements in the algorithm filling in a line of

the trace table for each instruction.

Instruction 1 is for player 1 to think of a number. Using our test data, that number

will be 42, so our trace table starts with the line shown in FIG-1.15.

The REPEAT word comes next. Although this does not cause any changes,

nevertheless a 2 should be entered in the next line of our trace table. Instruction 3

involves player 2 making a guess at the number (this guess will be 75 according to

our test data). After 3 instructions our trace table is as shown in FIG-1.16.

Instruction 4 is an IF statement containing a condition. This condition and its result

are written into columns 2 and 3 as shown in FIG-1.17.

FIG-1.14

The Components of a

Trace Table

Instruction Condition T/F Variables Output
number guess

Contains the number
of the instruction which

has been executed

Any condition contained in
the statement is written here

The result of the
condition is written

here as T or F

The value currently
stored in each variable

is given here

Any value displayed
(or spoken) is shown here

FIG-1.15

Tracing the First

Statement

Instruction Condition T/F Variables Output

1 42

number guess

FIG-1.16

Moving through the Trace

Instruction Condition T/F Variables Output

1 42
2
3 75

number guess

DarkBASIC Pro: Designing Algorithms 29

Because the condition is false, we now jump to instruction 6 (the ELSE line) and

on to 7. This is another IF statement and our table now becomes that shown in
FIG-1.18.

Since this second IF statement is also false, we move on to statements 9 and 10.

Instruction 10 causes output (speech) and hence we enter this in the final column

as shown in FIG-1.19.

Now we move on to statements 11,12 and 13 as shown in FIG-1.20.

Since statement 13 contains a condition which is false, we return to statement 2 and

then onto 3 where we enter 15 as our second guess (see FIG-1.21).

FIG-1.17

Tracing a Condition

Instruction Condition T/F Variables Output

1 42
2
3 75
4

number guess

guess = number F

FIG-1.18

Tracing a Second

Condition

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F

number guess

guess = number

guess < number

FIG-1.19

Recording Output
Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high

number guess

guess = number

guess < number

FIG-1.20

Reaching the end of the

REPEAT .. UNTIL

Structure

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F

number guess

guess = number

guess < number

guess = number

30 DarkBASIC Pro: Designing Algorithms

This method of checking is known as desk checking or dry running.

Activity 1.28

Create your own trace table for the number-guessing game and, using the

same test data as given in TABLE-1.7 complete the testing of the algorithm.

Were the expected results obtained?

Summary

l Computers can perform many tasks by executing different programs.

l An algorithm is a sequence of instructions which solves a specific problem.

l A program is a sequence of computer instructions which usually manipulates

data and produces results.

l Three control structures are used in programs :

Ø Sequence

Ø Selection

Ø Iteration

l A sequence is a list of instructions which are performed one after the other.

l Selection involves choosing between two or more alternative actions.

l Selection is performed using the IF statement.

l There are three forms of IF statement:

IF condition THEN
instructions

ENDIF
IF condition THEN

instructions
ELSE

instructions
ENDIF

FIG-1.21

Showing Iteration

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15

number guess

guess = number

guess < number

guess = number

DarkBASIC Pro: Designing Algorithms 31

IF
condition 1:

instructions
condition 2:

instructions
condition x :

instructions
ELSE

instructions
ENDIF

l Iteration is the repeated execution of one or more statements.

l Iteration is performed using one of three instructions:

FOR number of iterations required DO
instructions

ENDFOR
REPEAT

instructions
UNTIL condition
WHILE condition DO

instructions
ENDWHILE

l A condition is an expression which is either true or false.

l Simple conditions can be linked using AND or OR to produce a complex

condition.

l The meaning of a condition can be reversed by adding the word NOT.

l Data items (or variables) hold the information used by the algorithm.

l Data item values may be:

Input

Calculated

Compared

or Output

l Calculations can be performed using the following arithmetic operators:

Multiplication * Addition +

Division / Subtraction -

l The order of priority of an operator may be overridden using parentheses.

l Comparisons can be performed using the relational operators:

Less than <

Less than or equal to <=

Greater than >

Greater than or equal to >=

Equal to =

Not equal to <>

l The symbol := is used to assign a value to a data item. Read this symbol as is

32 DarkBASIC Pro: Designing Algorithms

assigned the value.

l In programming, a data item is referred to as a variable.

l The divide-and-conquer strategy of stepwise refinement can be used when

creating an algorithm.

l LEVEL 1 solution gives an overview of the sub-tasks involved in carrying out

the required operation.

l LEVEL 2 gives a more detailed solution by taking each sub-task from LEVEL

1 and, where necessary, giving a more detailed list of instructions required to

perform that sub-task.

l Not every statement needs to be broken down into more detail.

l Further levels of detail may be necessary when using stepwise refinement for

complex problems.

l Further refinement may not be required for every statement.

l An algorithm can be checked for errors or omissions using a trace table.

DarkBASIC Pro: Designing Algorithms 33

Solutions
Activity 1.1

No solution required.

Activity 1.2

One possible solution is:

Fill A

Fill B from A

Empty B

Empty A into B

Fill A

Fill B from A

Activity 1.3

1. An algorithm

2. A Computer program

3. mips (millions of instructions per second)

Activity 1.4

Choose club

Take up correct stance beside ball

Grip club correctly

Swing club backwards

Swing club forwards, attempting to hit ball

The second and third statements could be interchanged.

Activity 1.5

Player 1 thinks of a number

Player 2 makes a guess at the number

IF guess matches number THEN

Player 1 says “Correct”

ENDIF

Player 1 states the value of the number

Activity 1.6

IF letter appears in word THEN

Add letter at appropriate position(s)

ELSE

Add part to hanged man

ENDIF

Activity 1.7

IF the crossbow is on target THEN

Say “Fire”

ELSE

IF the crossbow is pointing too high THEN

Say “Down a bit”

ELSE

IF the crossbow is pointing too low THEN

Say “Up a bit”

ELSE

IF crossbow is too far left THEN

Say “Right a bit”

ELSE

Say “Left a bit"

ENDIF

ENDIF

ENDIF

ENDIF

Activity 1.8

IF

you know the phrase:

Make guess at phrase

there are many unseen letters:

Guess a consonant

ELSE

Buy a vowel

ENDIF

Activity 1.9

Other possibilities are:

Both conditions are true

condition 1 is true and condition 2 is false

Activity 1.10

IF you are first to place your hand over

those cards AND the last two cards laid

down are of the same value

THEN

You win the cards already played

ENDIF

Activity 1.11

IF double thrown OR fine paid THEN

Player gets out of jail

ENDIF

Activity 1.12

Assuming the player has one Ace and one Knave the

statement

IF a player has an Ace AND player has

King OR player has two Knaves

THEN

would reduce to

IF true AND false OR false THEN

The AND operation is then performed giving:

IF false OR false THEN

Next, the OR operation is completed giving a final

value of

IF false THEN

and, therefore the player does not pick up an extra card.

Activity 1.13

IF (total of cards held is 43 OR hand has

4 cards of the same value) AND hand

contains a Queen THEN

Activity 1.14

1. Sequence

Selection

Iteration

34 DarkBASIC Pro: Designing Algorithms

2. Boolean expression

3. Binary selection

Multi-way selection

4. No more than one of the conditions can be true at any

given time.

5. Boolean operators are: AND, OR, and NOT.

6. AND is performed before OR .

7. The order in which operations in a complex condition

are calculated can changed by using parentheses.

Activity 1.15

Throw dice

Add dice value to total

Activity 1.16

Only one line, the FOR statement, would need to be

changed, the new version being:

FOR 10 times DO

To call out the average, the algorithm would change to

Set the total to zero

FOR 10 times DO

Throw dice

Add dice value to total

ENDFOR

Calculate average as total divided by 10

Call out the value of average

Activity 1.17

In fact, only the first line of our algorithm is not repeated,

so the lines that need to be repeated are:

Player 2 makes an attempt at guessing the

number

IF guess matches number THEN

Player 1 says “Correct “

ELSE

IF guess is less than number THEN

Player 1 says “Too low”

ELSE

Player 1 says “Too high”

ENDIF

ENDIF

Activity 1.18

The FOR loop forces the loop body to be executed

exactly 7 times. If the player guesses the number in

less attempts, the algorithm will nevertheless

continue to ask for the remainder of the 7 guesses.

Later, we’ll see how to solve this problem.

Activity 1.19

FOR 6 times DO

Pick out ball

Call out number on the ball

ENDFOR

Activity 1.20

FOR every card in player’s hand DO

IF card is a knight THEN

Remove card from hand

ENDIF

ENDFOR

Activity 1.21

REPEAT

Place coin in machine

Pull arm

IF a win THEN

Collect winnings

ENDIF

UNTIL all coins are gone OR winnings are

at least £10.00

Activity 1.22

Roll both dice

WHILE both dice do not match in value DO

Choose dice with lower value

Roll the chosen dice

ENDWHILE

Activity 1.23

1. Iteration means executing a set of instructions over and

over again.

2. The three looping structures are:

FOR .. ENDFOR

REPEAT .. UNTIL

WHILE .. ENDWHILE

3. The FOR .. ENDFOR structure.

4. The WHILE .. ENDWHILE structure.

5. The REPEAT .. UNTIL structure.

Activity 1.24

Number of properties held

Amount of money held

The playing token being used

The position on the board

Activity 1.25

Input:

Letter guessed

Word guessed

Calculations:

Where to place a correctly guessed letter

The number of wrong guesses made

Comparisons:

The letter guessed with the letters in the word

The word guessed with the word to be guessed

The number of wrong guesses with the value 6

(6 wrong guesses completes the drawing of the

hanged man)

Output:

Hyphens indicating each letter in the word

Gallows

Body parts of the hanged man

Correctly guessed letters

DarkBASIC Pro: Designing Algorithms 35

Activity 1.26

1. Name and value

2. From outside the system. In a computerised system this is often via a

keyboard.

3. The relational operators are:

<, <=, >, >=, =, and <>

Activity 1.27

The LEVEL 1 is coded as:

1. Draw grids

2. Add ships to left grid

3. REPEAT

4. Call grid position(s)

5. Respond to other player’s call(s)

6. UNTIL there is a winner

The expansion of statement 4 would become:

4.1 Call grid reference

4.2 Get reply

4.3 WHILE reply is HIT DO

4.4 Mark position in second grid with X

4.5 Call grid reference

4.6 Get reply

4.7 ENDWHILE

4.8 Mark position in second grid with 0

The expansion of statement 5 would become:

5.1.REPEAT

5.2 Get other player’s call

5.3 IF other player’s call matches position of ship THEN

5.4 Call HIT

5.5 ELSE

5.6 Call MISS

5.7 ENDIF

5.8 UNTIL other player misses

Activity 1.28

The expected results were obtained.

Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15
4 F
6
7 T
8 Too low
11
12
13 F
2
3 42
4 T
5 Correct
11
12
13

number guess

guess = number

guess < number

guess = number

guess = number

guess < number

guess = number

guess = number

guess = number T

36 DarkBASIC Pro: Designing Algorithms

2

Correcting Errors
Creating a Project in DarkBASIC Pro
Executing a Program
Screen Output
Text Colour, Size, Font, and Style
The Compilation Process
Transparent and Opaque Text
Using the DarkBASIC Pro Editor

DarkBASIC Pro: Starting DarkBASIC Pro 37

Programming a Computer
Introduction

In the last chapter we created algorithms written in a style of English known as

structured English. But if we want to create an algorithm that can be followed by a

computer, then we need to convert our structured English instructions into a

programming language.

There are many programming languages; C++, Java, C#, and Visual Basic being

amongst the most widely used. So how do we choose which programming language

to use? Probably the most important consideration is the area of programming that

is best suited to a given language. For example, Java is designed to create programs

that can be executed on a variety of different computers, while C++ was designed
for fast execution times.

We are going to use a language known as DarkBASIC Professional or just

DarkBASIC Pro, which was designed specifically for writing computer games.
Because of this, it has many unique commands for displaying graphics, controlling

joysticks, and creating three dimensional images.

The Compilation Process

As we will soon see, DarkBASIC Pro uses statements that retain some English terms

and phrases, so we can look at the set of instructions and make some sense of what
is happening after only a relatively small amount of training.

Unfortunately, the computer itself only understands instructions given in a binary

code known as machine code and has no capability of directly following a set of

instructions written in DarkBASIC Pro. But this need not be a problem. If we were
given a set of instructions written in Russian we could easily have them translated

into English and then carry out the translated commands.

This is exactly the approach the computer uses. We begin the process of creating a

new piece of software by mentally converting our structured English into

DarkBASIC Pro commands. These commands are entered using a text editor which

is nothing more than a simple word-processor-like program allowing such basic

operations as inserting and deleting text. Once the complete program has been

entered, we get the machine itself to translate those instructions into machine code.

The original code is known as the source code; the machine code equivalent is
known as the object code.

The translator (known as a compiler) is simply another program installed in the

computer. After typing in our program instructions, we feed these to the compiler
which produces the equivalent instructions in machine code. These instructions are

then executed by the computer and we should see the results of our calculations

appear on the screen (assuming there are output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If you make the slightest mistake, even something

as simple as missing out a comma or misspelling a word, the translation process

will fail. When this happens in DarkBASIC Pro the incorrect command is

highlighted in red.

Binary is a method of

representing numbers

using only the digits 0

and 1.

38 DarkBASIC Pro: Starting DarkBASIC Pro

A failure of this type is known as a syntax error - a mistake in the grammar of your

commands. Any syntax errors have to be corrected before you can try compiling

the program again.

As we work on the computer entering a DarkBASIC Pro program, we need to save

this source code to a file. This ensures that we have a copy of our work should there

be a power cut or we accidentally delete the program from the computer’s memory.

DarkBASIC Pro refers to this as the source file.

But a second file, known as the project file is also produced. This second file is

created automatically by DarkBASIC Pro and contains details of any images,

sounds or other resources that might be used by your program.

When we compile our program (translating it from source code to object code), yet

another file is produced. This third file, the executable file, contains the object code

and is, again, created automatically.

To run our program, the source code in the executable file is loaded into the

computer’s memory (RAM) and the instructions it contains are carried out.

The whole process is summarised in FIG-2.1.

If we want to make changes to the program, we load the source code into the editor,

make the necessary changes, then save and recompile our program, thereby

replacing the old version of all three files.

Activity 2.1

1. What type of instructions are understood by a computer?

2. What piece of software is used to translate a program from source code to

object code?

3. Misspelling a word in your program is an example of what type of error?

FIG-2.1

Creating Software

Design
algorithm

Save source code
and project details

to disk

Save object code
to disk

Load object code
into memory

Convert
to program code

Compile
program

Run
program

DarkBASIC Pro: Starting DarkBASIC Pro 39

Starting DarkBASIC Pro
Introduction

DarkBASIC Pro is based on one of the earliest computer languages, BASIC, but

has been enhanced specifically to aid the creation of games programs.

The language was invented by Lee Bamber who formed a company to sell
DarkBASIC Pro. Over the last few years the company has grown in size and

expanded to sell other DarkBASIC related products, such as DarkMatter, which

contains many 3D objects that can be used in DarkBASIC programs.

In fact, there are two versions of the language: DarkBASIC and DarkBASIC
Professional. It’s this second, enhanced version of the language we will be using

here.

DarkBASIC Pro Files

Because a typical program written in DarkBASIC Pro is likely to contain images,

sounds and even video, the DarkBASIC Pro package has to save much more than
the set of instructions that make up your program; it also needs to store details of

these images, sounds, etc.

To do this DarkBASIC Pro creates two files every time you produce a new program

(see FIG-2.2).

The first of these files, known as the project file, contains details of the images and

sounds used by your program, as well as other information such as the screen

resolution and number of colours used. This file has a .dbpro extension.

The second file, known as the source file, contains only the program’s code written

in the DarkBASIC Pro language. This file has a .dba extension.

FIG-2.2

The Two Files Created by a

DarkBASIC Pro Program

Every DarkBASIC Pro program creates two files

Project File
(.dbpro)

Source File
(.dba)

40 DarkBASIC Pro: Starting DarkBASIC Pro

Getting Started with DarkBASIC Pro

When you first start up DarkBASIC Pro you should see one of the screens shown

in FIG-2.3. Exactly which one you see depends on how often DarkBASIC Pro has
been run on your computer. The first time the program is run, the display will match

that shown on the left of FIG-2.3; every other time your screen will match that

shown on the right.

First Start-Up

If this is the first time DarkBASIC Pro has been run on your machine, as well as

the main window, the Assistant Window also shows on the right-hand side.

If you close down the Assistant Window the display changes to match that shown

in FIG-2.4, showing the Project Dialog box.

Subsequent Start-Ups

When DarkBASIC Pro is started up for the second (or subsequent) time, use the

FILE | NEW PROJECT option from the main menu, or click on the New Project icon

near the top left corner, to display the Project Dialog box.

Specifying a Project

The next stage is to create a project file by filling in the details required by the

Project Dialog box.

First the name to be given to the project is entered. This should be something

meaningful like Hangman or SpaceMonsters.

FIG-2.3

The Start-Up Screen in

DarkBASIC Pro

DarkBASIC Pro Start-Up Screen (First Start-Up Only) DarkBASIC Pro Start-Up Screen (Subsequent Start-Ups)

FIG-2.4

The Project Dialog Box

Click on this icon
to show the

dialog
New Project

DarkBASIC Pro: Starting DarkBASIC Pro 41

Next the Specify a Folder radio button is selected and the folder in which the

DarkBASIC Pro projects are to be saved is entered. The folder specified must

already exist. See FIG-2.5 for a summary of these steps.

Once the OK button in the Project Dialog box is clicked, the dialog box disappears

and you are left with the main edit area where the program code is entered. Line

numbers appear to the left of this area.

A First Program

Before we begin looking in detail at the commands available in DarkBASIC Pro,

we’ll have a quick look at a simple program and show you how to type it in, run it

and save the code.

The program in LISTING-2.1 gets you to enter your name at the keyboard and then

displays a greeting on the screen.

Rem Project: First

Rem Created: 02/10/2004 07:35:27

Rem ***** Main Source File *****

REM *** A program to read and display your name ***

INPUT “Enter your name : ”,name$

PRINT “Hello ” ,name$, “ welcome to DarkBASIC Pro.”

WAIT KEY

END

An Explanation of the Code

REM This is short for REMARK and is used to indicate a

comment within the program. Comments are totally

ignored when the source code is translated into object code

and are only included for the benefit of anybody examining

the program code, giving an explanation of what the

program does.

INPUT This is a keyword in DarkBASIC Pro. Keywords are words

recognised by the programming language as having a

specific meaning.

All keywords are shown throughout this text in uppercase,

but lowercase characters are also acceptable.

The INPUT keyword tells the computer to allow the user

to enter a value from the keyboard.

FIG-2.5

Filling in the New

Project Dialog Box

1
Enter the name of
the project here 3

Use the Browse icon
to find the folder where the

project is to be stored

A sub-folder will be created
automatically to hold the three
DarkBASIC Pro files that will

be produced

2
Select

Specify a Folder

DarkBASIC Pro allows

words to be given in

either upper or lower case.

When you type in a

program, you’ll see that

the instructions are

colour-coded with

keywords appearing in

blue.

LISTING-2.1

A First Program

42 DarkBASIC Pro: Starting DarkBASIC Pro

24

Creating 3D Sound
Loading and Playing Mono and Stereo WAV Files
Positioning a 3D sound
Positioning the Listener
Rotating the Listener
Setting Sound Speed
Setting Sound Volume

DarkBASIC Pro: Sound 603

Mono and Stereo Sound
Introduction

Don’t confuse sound files with music files. The set of instructions for handling

sound files is much more extensive than that for music (which we looked at in

Chapter 15). The position of a sound can be moved around in 3-dimensional space,

giving the listener a total surround-sound experience. Even the apparent position of

the listener can be moved.

DarkBASIC Pro sound commands only handle WAV files. To play other file types

use either the MUSIC or ANIMATION commands.

WAV files can be recorded in mono (1 track) or stereo (2 tracks). Stereo sound has

the advantage of retaining spatial information about sound sources, but creates files

twice the size of the equivalent mono file. The commands given below apply equally

to each type of recording.

The Basics of Loading and Playing Sounds

The LOAD SOUND Statement

Before using a WAV file, it must be loaded using the LOAD SOUND statement

which has the format shown in FIG-24.1.

In the diagram:

filename is a string specifying the name of the file to be

loaded. It is best if the file has been previously

copied to your directory using the Media|Add
option. However, path information can be

included in the string.

sndno is an integer value by which the sound is

identified within the program. Any positive

integer value can be used, although no two sounds

can use the same value at the same time.

A typical example of using this statement would be:

LOAD SOUND “help.wav”, 1

If the requested file is not found or cannot be loaded for some reason, then your

program will terminate.

The PLAY SOUND Statement

Once the sound file has been loaded, it can be played using the PLAY SOUND
statement. In its simplest form we need only state the sound number of the file we

FIG-24.1

The LOAD SOUND

Statement

SOUNDSOUNDLOADLOAD sndnosndno,,filenamefilename

604 DarkBASIC Pro: Sound

want to play. For example, assuming we’ve loaded a sound file and assigned it the

number 1, we can play that sound with the statement:

PLAY SOUND 1

The PLAY SOUND statement causes the sound file to start playing, but subsequent

statements in your program will continue to be executed while the sound plays.

LISTING-24.1 gives a simple example of how to play a sound file.

REM *** Load sound ***

LOAD SOUND “welcome.wav”, 1

WAIT 500

REM *** Play sound ***

PLAY SOUND 1

REM *** End program ***

WAIT KEY

END

The WAIT 500 statement gives the program time to complete the LOAD instruction

before attempting to play the file. Without this, it is possible that the first part of the

sound will be missing when it is played.

Activity 24.1

Type in and test the program given in LISTING-24.1 (sounds01.dbpro).

Make sure you’ve copied the required sound file to your folder and that sound

is enabled on your computer.

Sound files need not be played from the start. Instead, by using an extended version

of the PLAY SOUND statement, you can specify how many bytes into the file

playing should begin. So, if we don’t want to play the first 10000 bytes (bytes 0 to

9999) of the sound file, we could use the statement:

PLAY SOUND 1, 10000

You'll probably have to play about with the byte value until you get the starting

point you want.

The complete format of the PLAY SOUND statement is given in FIG-24.2.

In the diagram:

sndno is the integer previously assigned to the sound

file to be played.

startbyte is an integer representing the number of bytes

into the file at which playing is to start. If omitted,

a value of zero is assumed.

Activity 24.2

Modify your last program so that it begins playing at byte 20000.

FIG-24.2

The PLAY SOUND

Statement

SOUNDSOUNDPLAYPLAY sndno startbytesndno startbyte,,

LISTING-24.1

Playing a Sound File

DarkBASIC Pro: Sound 605

The LOOP SOUND Statement

Whereas the PLAY SOUND statement plays the sound file only once, the LOOP

SOUND statement will replay the sound continuously. Again, there is more than
one option when using this statement. The simplest of these is to state only the sound

number. For example, the line

LOOP SOUND 1

will play sound 1 over and over again.

A second option is to specify a start byte in the file, as in the line:

LOOP SOUND 1,11000

This causes the first 11000 bytes of the file to be omitted on every play.

The next option allows us to stop the sound before the end of the file is reached.
Typically, we might write

LOOP SOUND 1,11000,50000

This time, only the sound which occupies bytes 11000 to 50000 will be played

during each loop.

If you want the first playing to start at a different position, you can add a final

parameter, as in the line:

LOOP SOUND 1,11000,50000,30000

Now bytes 30000 to 50000 will play the first time round and subsequently it will

be bytes 11000 to 50000 that play.

The complete format of the LOOP SOUND statement is given in FIG-24.3.

In the diagram:

sndno is the integer previously assigned to the sound

file to be looped.

startbyte is an integer representing the number of bytes

into the file at which playing is to start on each

iteration.

endbyte is an integer representing the number of bytes into

the file at which playing is to cease.

firsttimebyte is an integer representing the number of bytes into

the file at which playing is to begin on the first

play only. firsttimebyte should have a value

between startbyte and endbyte.

FIG-24.3

The LOOP SOUND

Statement

SOUNDSOUNDLOOPLOOP sndno startbyte firsttimebyteendbytesndno startbyte firsttimebyteendbyte, , ,, , ,

606 DarkBASIC Pro: Sound

Activity 24.3

Modify your previous program so that the complete sound file is played

continuously.

Modify the file again so that it plays bytes 20000 to 50000 only.

The PAUSE SOUND Statement

It is possible to pause a playing sound file using the PAUSE SOUND statement,
which has the format shown in FIG-24.4.

In the diagram:

sndno is an integer giving the number of the sound to be

paused.

We could, therefore, pause the sound assigned sound number 1 with the line:

PAUSE SOUND 1

This assumes, of course, that the sound 1 is currently playing.

The RESUME SOUND Statement

A paused sound file can be resumed using the RESUME SOUND statement, which

has the format shown in FIG-24.5.

In the diagram:

sndno is an integer giving the number of the sound to be

resumed.

Of course, we should only use this statement on a sound file that has previously

been paused. So, assuming we have a paused sound with the statement

PAUSE SOUND 1

then we could resume the sound using the line

RESUME SOUND 1

The sound resumes from exactly the point in the file where it paused.

The program in LISTING-24.3 pauses the playing sound when any key is pressed

and resumes it when a second key is pressed. Pressing a third key terminates the

program.

FIG-24.4

The PAUSE SOUND

Statement

SOUNDSOUNDPAUSEPAUSE sndnosndno

FIG-24.5

The RESUME SOUND

Statement
SOUNDSOUNDRESUMERESUME sndnosndno

DarkBASIC Pro: Sound 607

REM *** Load sound ***

LOAD SOUND “demo.wav”, 1

WAIT 500

REM *** Play sound continuously ***

LOOP SOUND 1

REM *** Pause when key is pressed ***

WAIT KEY

PAUSE SOUND 1

REM *** Resume when key is pressed ***

WAIT KEY

RESUME SOUND 1

REM *** End program ***

WAIT KEY

END

Activity 24.4

Type in and test the program given above (sounds02.dbpro).

Does the sound resume looping?

The STOP SOUND Statement

Rather than just pause a sound file, we can stop it altogether using the STOP
SOUND statement, which has the format shown in FIG-24.6.

In the diagram:

sndno is an integer giving the number of the sound to be

stopped.

For example, the line

STOP SOUND 1

will terminate the playing of sound 1.

However, the sound file can still be resumed using the RESUME SOUND

statement. But, when resuming a stopped sound, play starts from the beginning of

the file.

The SET SOUND SPEED Statement

By changing the speed of a sound, we can make an everyday sound resemble a clap

of thunder (when the sound is slowed down) or like a high-pitched squeak (when

it’s speeded up).

The speed at which a sound file plays can be changed using the SET SOUND
SPEED statement. The format of this statement is shown in FIG-24.7.

LISTING-24.2

Pausing and Resuming a

Playing Sound

FIG-24.6

The STOP SOUND

Statement

SOUNDSOUNDSTOPSTOP sndnosndno

FIG-24.7

The SET SOUND

SPEED Statement

SOUND SPEEDSOUND SPEEDSETSET sndno freqsndno freq,,

608 DarkBASIC Pro: Sound

In the diagram:

sndno is an integer giving the number of the sound

whose speed is to be set.

freq is an integer value representing the upper

frequency to be produced when the file is playing.

This value must lie in the range 100 to 100,000.

A frequency value may seem a rather strange way to set the speed of a sound file,

but a bit of trial and error will soon get the effect you want. Most files will sound

normal with a frequency setting of 22,000, with 11,000 giving half speed and 44,000

giving double speed.

To play sound 1 at half speed we would use the lines:

SET SOUND SPEED 1, 11000

PLAY SOUND 1

Activity 24.5

Modify your previous program so that the sound file is at half speed when it is

first played and double speed when it is resumed.

The SET SOUND VOLUME Statement

The SET SOUND VOLUME statement is designed to modify the volume of a sound

and has the format shown in FIG-24.8.

In the diagram:

sndno is an integer giving the number of the sound

whose volume is to be set.

perc is an integer value representing the new volume

as a percentage of the original volume. This value

must lie in the range 0 (silent) to 100 (normal).

Because of the percentage values allowed, it is not possible to increase the volume
of the sound from its normal level, only decrease it.

For example, we could reduce the volume of a sound with the statements

SET SOUND VOLUME 1, 90

PLAY SOUND 1

The CLONE SOUND Statement

If required, you can assign as second sound number to an already loaded sound file.

This allows the second sound file to be played independently from the first, but does

not require a second copy of the sound file to be held in RAM and thereby saves

memory space.

FIG-24.8

The SET SOUND

VOLUME Statement

SOUND VOLUMESOUND VOLUMESETSET sndno percsndno perc,,

DarkBASIC Pro: Sound 609

A copy of an existing sound file is made using the CLONE SOUND statement which

has the format shown in FIG-24.9.

In the diagram:

newsndno is the additional integer value to be assigned to

the new sound object.

origsndno is the integer value specifying which existing

sound object is to be copied into the new sound

object.

The program in LISTING-24.3 assigns two values to a sound file and then plays
both sound objects with a one second delay between each.

REM *** Load sound file ***

LOAD SOUND “sample.wav”, 1

REM *** Assign a second value to the sound ***

CLONE SOUND 2,1

REM *** Start playing the sound using its first value ***

PLAY SOUND 1

REM *** Wait 1 second ***

SLEEP 1000

REM *** Play the sound using its second value ***

PLAY SOUND 2

REM *** End program ***

WAIT KEY

END

Activity 24.6

Type in and test the program given above (sounds03.dbpro).

The DELETE SOUND Statement

A loaded sound file occupies RAM space, so when you’re finished with the sound

it is best to delete it - thereby freeing up the RAM space that is holding the sound

file. The DELETE SOUND statement has the format shown in FIG-24.10.

In the diagram:

sndno is the number of the existing sound object to be

deleted.

Note that the sound object is not deleted if a clone exists. To remove the sound from

RAM the original sound object and all of its clones must be deleted.

FIG-24.9

The CLONE SOUND

Statement

SOUNDCLONE SOUNDCLONE origsndnonewsndno origsndnonewsndno ,,

FIG-24.10

The DELETE SOUND

Statement

SOUNDDELETE SOUNDDELETE sndnosndno

LISTING-24.3

Cloning a Sound

610 DarkBASIC Pro: Sound

Recording Sound

It is also possible to make a DarkBASIC Pro program record sound if you have a

microphone attached to your sound card.

The RECORD SOUND Statement

To record a sound use the RECORD SOUND statement. The statement defaults to

a 5 second recording, but by entering duration information, a recording of any

(reasonable) length can be made. The format for the RECORD SOUND statement

is given in FIG-24.11.

In the diagram:

sndno is the integer value to be assigned to the recording.

duration is an integer representing duration of the

recording in milliseconds.

So, the command

RECORD SOUND 1

should create sound object 1 from a 5 second recording from the microphone - but

it’s not quite that easy!

The RECORD SOUND statement only works if you’ve already used that sound
number to load a file. So, the line

RECORD SOUND 1

will give us an error unless we have previously loaded a file (even though you’re

not going to use that file) using the sample sound number. For example:

LOAD “sample.wav”,1

RECORD SOUND 1

To make a 10 second recording and assign it to sound number 3, we could use the

statements

LOAD “mysound.wav”,3

RECORD SOUND 3, 10000

The program will continue to execute other statements in your program while the

recording is being made. Normally, you won’t want this to happen, so the RECORD

SOUND statement should be followed by a WAIT KEY statement or a WAIT

milliseconds statement (in which the number of milliseconds matches, or is slightly

greater than, the length of the recording).

The STOP RECORDING SOUND Statement

If you want to stop a recording before the specified duration has elapsed, then you

FIG-24.11

The RECORD SOUND

Statement

SOUNDRECORD SOUNDRECORD sndnosndno durationduration,,

DarkBASIC Pro: Sound 611

can use the STOP RECORDING SOUND statement which has the format shown

in FIG-24.12.

The program in LISTING-24.4 records from the microphone for up to 10 seconds,

but stops early if a key is pressed. When the recording is complete, it is replayed.

REM *** Load a sound file for sound number being used ***

REM *** We won’t use this file, but the sound number ***

REM *** needs to be loaded first, otherwise RECORD SOUND ***

REM *** won’t work ***

LOAD SOUND “sample.wav”,1

REM *** Start recording - 10 seconds ***

PRINT “Speak now ”

RECORD SOUND 1,10000

REM *** Stop recording after 10 secs or key pressed ***

WAIT KEY

STOP RECORDING SOUND

REM *** Play back the recorded sound ***

PRINT “Replaying now...”

SLEEP 500

PLAY SOUND 1

REM *** End program ***

WAIT KEY

END

Activity 24.7

Plug a microphone into your system. Check that it is operating correctly (Try

Accessories|Entertainment|Sound Recorder)

Type in the program given above (sounds04.dbpro) and test that it operates

correctly.

The SAVE SOUND Statement

Your recorded sound can be saved to a file using the SAVE SOUND statement

which has the format shown in FIG-24.13.

In the diagram:

filename is a string giving the file name to be used when

saving the sound data. This string may include

path information. The named file should not

already exist.

sndno is the integer value previously assigned to the

sound that is to be saved.

FIG-24.12

The STOP

RECORDING SOUND

Statement

SOUNDSTOP RECORDING SOUNDSTOP RECORDING

FIG-24.13

The SAVE SOUND

Statement

SOUNDSOUNDSAVESAVE sndnosndno,,filenamefilename

LISTING-24.4

Recording a Sound

612 DarkBASIC Pro: Sound

We could save a recorded sound (with sound number 1) to a file named speech.wav

in the current folder with the line:

SAVE SOUND “speech.wav”,1

Activity 24.8

Modify your previous program so that the recorded sound is saved to

speech.wav after it has been replayed.

What happens if you try to run this program a second time?

Retrieving Sound File Data

Several statements exist in DarkBASIC Pro which allow information about

currently loaded sound files to be retrieved. For example, we can find out whether

a sound object is playing, stopped, paused, etc. The statements that supply us with

this information are described below.

The SOUND EXIST Statement

We can find out if a specific number has been assigned to a sound file by using the

SOUND EXIST statement. This statement returns the value 1 if the specified

number has been assigned to a sound file, otherwise zero is returned. The statement

has the format shown in FIG-24.14.

In the diagram:

sndno is the number of the sound object being checked.

Typical examples of how the statement might be used are:

loaded = SOUND EXIST(1)

and

IF SOUND EXIST(3) = 1

PRINT “SOUND file loaded in 3"

ELSE

PRINT “SOUND file not loaded in 3"

ENDIF

The SOUND PLAYING Statement

This statement returns 1 if the sound file is currently playing, otherwise zero is

returned. The statement has the format shown in FIG-24.15.

FIG-24.14

The SOUND EXIST

Statement

EXISTEXIST ()()

integer

SOUNDSOUND sndnosndno

DarkBASIC Pro: Sound 613

In the diagram:

sndno is the number of the sound object being tested.

The value 1 is returned if the sound file is currently playing because of either a

PLAY SOUND or LOOP SOUND statement.

The SOUND LOOPING Statement

The SOUND LOOPING statement returns 1 if the sound file is currently looping,
otherwise zero is returned. The statement has the format shown in FIG-24.16.

In the diagram:

sndno is the number of the sound object being tested.

A value of 1 is only returned if the sound file is playing because of a LOOP SOUND

statement. A playing sound file initiated using the PLAY SOUND statement will

return zero.

The SOUND PAUSED Statement

The SOUND PAUSED statement returns 1 if the sound file is currently paused,

otherwise zero is returned. The statement has the format shown in FIG-24.17.

In the diagram:

sndno is the number of the sound object being tested.

FIG-24.15

The SOUND PLAYING

Statement

PLAYINGPLAYING ()()

integer

SOUNDSOUND sndnosndno

FIG-24.16

The SOUND LOOPING

Statement

LOOPINGLOOPING ()()

integer

SOUNDSOUND sndnosndno

FIG-24.17

The SOUND PAUSED

Statement PAUSEDPAUSED ()()

integer

SOUNDSOUND sndnosndno

614 DarkBASIC Pro: Sound

The program in LISTING-24.5 displays the state of the playing sound file.

REM *** Load sound file ***

LOAD SOUND “demo2.wav”, 1

WAIT 500

REM *** Play sound file continuously ***

LOOP SOUND 1

REM *** Get sound file’s status ***

playing = SOUND PLAYING(1)

looping = SOUND LOOPING(1)

paused = SOUND PAUSED(1)

REM *** Display details ***

IF playing = 1

PRINT “SOUND is playing”

ENDIF

IF looping = 1

PRINT “SOUND is looping”

ENDIF

IF paused = 1

PRINT “SOUND is paused”

ENDIF

REM *** End program ***

WAIT KEY

END

Activity 24.9

Type in and test the program given above (sounds05.dbpro).

1) Change the line

LOOP SOUND 1

to

PLAY SOUND 1

How does this affect the messages displayed?

2) Add the lines

WAIT KEY

PAUSE SOUND 1

after the

PLAY SOUND 1 statement.

How do the messages change?

3) Change the line

PAUSE SOUND 1

to

STOP SOUND 1

Are the messages changed?

LISTING-24.5

Displaying the State of a

Sound File

DarkBASIC Pro: Sound 615

The SOUND VOLUME Statement

This statement returns the volume setting for the specified sound. The statement’s

format is shown in FIG-24.18

In the diagram:

sndno is the number of the sound object being

interrogated.

A typical statement to determine the current volume setting for sound 1 would be:

volume = SOUND VOLUME(1)

A sound file playing at default volume would return the value 100.

The SOUND SPEED Statement

This statement returns the speed setting for the specified sound. The statement’s

format is shown in FIG-24.19.

In the diagram:

sndno is the number of the sound object being

interrogated.

A typical statement to determine the current speed setting for sound 1 would be:

speed = SOUND SPEED(1)

A sound file playing at default speed would return the value 100.

Activity 24.10

Modify your previous program to display the speed and volume settings of the

playing sound file.

Activity 24.11

Modify the final version of the asteroids project you created in the last chapter

to play a sound when a missile is fired and an asteroid is hit.

FIG-24.18

The SOUND

VOLUME Statement

()()

integer

SOUNDSOUND sndnosndnoVOLUMEVOLUME

FIG-24.19

The SOUND

VOLUME Statement

()()

integer

SOUNDSOUND sndnosndnoSPEEDSPEED

616 DarkBASIC Pro: Sound

Moving a Sound

When stereo sound was first introduced, a favourite demonstration of its effects was

to have a train rush past the listener. You could here it move from the left, through
the centre and off to the right. In its day, it was very impressive!

The SET SOUND PAN Statement

We can create a similar effect, making a sound appear as if its coming from

anywhere between our two speakers using the SET SOUND PAN statement. The

statement has the format shown in FIG-24.20.

In the diagram:

sndno is the number of the sound object to be panned.

panvalue is an integer value between -10,000 and + 10,000.

A value of -10,000 will make the sound come

exclusively from the left speaker, zero places the

sound at the centre position between the speakers,

and 10,000 places the sound by the right speaker.

In LISTING-24.6 a sound is panned while it plays.

REM *** Load sound ***

LOAD SOUND “welcome.wav”, 1

REM *** Play sound ***

WAIT 500

PLAY SOUND 1

REM *** Change pan setting while sound playing ***

FOR c = -10000 TO 10000 STEP 1000

SET SOUND PAN 1,c

WAIT 100

NEXT c

REM *** End program ***

WAIT KEY

END

Activity 24.12

Type in and test the program in LISTING-24.7 (sounds06.dbpro).

Reverse the FOR loop (making it go from 10,000 to -10,000). How does this

affect the sound output?

The SOUND PAN Statement

We can determine the current pan setting using the SOUND PAN statement. This

has the format shown in FIG-24.21.

FIG-24.20

The SET SOUND PAN

Statement

SOUND PANSOUND PANSETSET sndno panvaluesndno panvalue,,

LISTING-24.6

Panning a Sound File

DarkBASIC Pro: Sound 617

In the diagram:

sndno is the number of the sound object to be tested.

The value returned will be an integer in the range -10,000 to +10,000 and will match

the value assigned by the last SET SOUND PAN statement for this object. If a SET

SOUND PAN has not been performed on the object, then a value of zero will be

returned.

Playing Multiple Sound Files

It’s possible to play two or more sound files at the same time by loading multiple

sound files. For example, we could load two sound files with the lines:

LOAD SOUND “demo1.wav",1

LOAD SOUND “demo2.wav”,2

These can then be played at the same time using the lines

PLAY SOUND 1

PLAY SOUND 2

The program in LISTING-24.7 demonstrates two sound files being played. The first
file starts playing right away, but the second file starts playing after a key is pressed.

REM *** Load sound files ***

LOAD SOUND “demo1.wav",1

LOAD SOUND “demo2.wav”,2

REM *** Play first sound file continuously ***

LOOP SOUND 1

REM *** Wait for key press, then start second file playing ***

WAIT KEY

LOOP SOUND 2

REM *** End program ***

WAIT KEY

END

Activity 24.13

Type in and test the program given above (sounds07.dbpro).

Summary

l The SOUND statements are designed to .wav files only.

l Use LOAD SOUND to load a sound file into RAM.

FIG-24.21

The SOUND PAN

Statement

()()

integer

SOUNDSOUND sndnosndnoPANPAN

LISTING-24.7

Playing Multiple Sound

Files

618 DarkBASIC Pro: Sound

l Use PLAY SOUND to play a sound file once only.

l Use LOOP SOUND to play a sound file repeatedly.

l Use PAUSE SOUND to pause a sound file which is currently playing.

l Use RESUME SOUND to resume a sound file which has been paused.

l Use STOP SOUND to halt a playing sound file.

l Use SET SOUND SPEED to set the highest frequency (and hence the speed) of

a sound file.

l Use SET SOUND VOLUME to set the volume of a sound file when it is played.

l Use CLONE SOUND to make an independent copy of a loaded sound file.

l Use DELETE SOUND to remove a sound from RAM.

l Use RECORD SOUND to initiate a sound recording.

l Use STOP RECORDING SOUND to stop the current recording.

l Use SAVE SOUND to save a sound file currently held in RAM to backing store.

l SOUND EXIST returns 1 if the specified sound file is currently in RAM.

l SOUND PLAYING returns 1 if the specified sound file is currently playing or

looping.

l SOUND LOOPING returns 1 if the specified sound file is currently looping.

l SOUND PAUSED returns 1 if the specified sound file is currently paused.

l SOUND VOLUME returns the volume setting of a specified sound file.

l SOUND SPEED returns the current maximum frequency of a specified sound

file.

l Use SET SOUND PAN to set the balance between the two front speakers.

l SOUND PAN returns the current balance setting of a specified sound file.

l Several sound files can be played simultaneously.

DarkBASIC Pro: Sound 619

3D Sound Effects
Introduction

DarkBASIC Pro contains an additional set of commands specifically for handling

3D sound effects. A 3D sound can appear to the listener to originate from anywhere

in space - to the side, front, back, above, or below the listener.

The 3D effect is not recorded within the sound file, but is created by manipulating

the balance, delay and loudness of the speakers connected to your sound card. A

good sound card will allow you to use a 5.1 speaker system (with five speakers and

a sub-woofer). The speakers should be positioned as shown in FIG-24.22. The

position of the sub-woofer, which generates the very low frequency noises, is not

important since our brain cannot detect the direction of such low frequency sounds.

If we image we’re floating in the centre of a room, then sounds can come from our

left or right (i.e. anywhere along the x-axis), above or below us (i.e. anywhere along
the y-axis), and anywhere in front or behind us (i.e. the z-axis). The concept is shown

in FIG-24.23.

Notice that your head is placed at the origin, where all three axes meet. To our left

is the -x part of the x-axis and in front of us is the +z part of the z-axis.

FIG-24.22

A Suitable Setup for 3D

Sound

Speaker Speaker Speaker

S
p
e

a
k
e
r S

p
e

a
k
e
r

Listener

Room

Sub-
woofer

FIG-24.23

Our Listening Position in

3D Space

+y

-y

+x

-x

-z

+z

listener

620 DarkBASIC Pro: Sound

Loading and Playing 3D Sounds

The LOAD 3DSOUND Statement

Although the sounds used are in every way normal mono WAV files, if you intend
to create a 3D effect with such a file, it must be loaded using the LOAD 3DSOUND

statement which has the following format shown in FIG-24.24.

In the diagram:

filename is a string specifying the name of the file to be

loaded. It is best if the file has been previously

copied to your directory using the Media|Add
option. The file must be a mono WAV file.

sndno is an integer representing the value by which the

sound object created is identified within the

program.

A typical example of using this statement would be:

LOAD 3DSOUND “help.wav”, 1

If the requested file is not found or cannot be loaded for some reason, then your

program will terminate.

You can play the sound using the normal PLAY SOUND or LOOP SOUND. The

sound file will be played at equal volume through all speakers and should give the

impression that the sound originates from inside your head.

Activity 24.14

Find out what effects are produced on your own system by executing the

following program (sounds3D.dbpro):

LOAD 3DSOUND “laser.wav”,1

WAIT 500

LOOP SOUND 1

WAIT KEY

END

The POSITION SOUND Statement

We can move the position from which the sound is coming using the POSITION

SOUND statement. This statement allows you to specify the 3D coordinates at

which the sound is to be placed and has the format shown in FIG-24.25.

FIG-24.25

The POSITION SOUND

Statement

POSITIONPOSITION sndno x y zsndno x y z, , ,, , ,SOUNDSOUND

FIG-24.24

The LOAD 3DSOUND

Statement

3DSOUND3DSOUNDLOADLOAD sndnosndno,,filenamefilename

DarkBASIC Pro: Sound 621

In the diagram:

sndno is the number previously assigned to the 3D

sound.

x,y,z are three real numbers representing the 3D

coordinates of the sound's new position.

Typically, values for these parameters should be

given in 100’s.

For example, we could place a sound at position (100,300,50) (see FIG-24.26) using

the statement:

POSITION SOUND 1,100,300,50

Activity 24.15

Modify your previous program to add the code

FOR x = -300 TO 300 STEP 100

FOR y = -300 TO 300 STEP 100

FOR z = -300 TO 300 STEP 100

POSITION SOUND 1, x, y, z

WAIT 1000

NEXT z

NEXT y

NEXT x

This should be placed immediately after the LOOP SOUND statement.

Controlling the Listener

The POSITION LISTENER Statement

Not only can a sound be positioned, but the apparent position of the listener can
also be moved. Of course, rather than physically move the listener, the effect is

achieved by adjusting the output from the speakers to give the impression that the

listener has moved to a new position. The effect is achieved using the POSITION

LISTENER statement which has the format shown in FIG-24.27.

FIG-24.26

Positioning a Sound

+y

-y

+x

-x

-z

+z

Sound appears to the
listener to come from

this point in space

622 DarkBASIC Pro: Sound

In the diagram:

x,y,z are three real numbers representing the 3D

coordinates to which the listener is to be moved.

For example, we might move the listener forward using the statement:

POSITION LISTENER 0,0,200

The ROTATE LISTENER Statement

Even though a listener’s position is moved, the listener continues to face in a forward

direction (towards +z). However, by using the ROTATE LISTENER, we can rotate

the listener by 360
o

around any axis we wish.

Imagine you are sitting in a swivel chair listening to a piece of music. You can turn

the chair to the left or right (technically, this is called rotation about the y-axis).

You can also tilt the chair forwards or backwards - to a limited extent (rotation

about the x-axis). A final option is to lean your body over to the left or right
(rotation about the z-axis). The format for this statement is given in FIG-24.28.

In the diagram:

x,y,z are three real numbers representing the degrees

of rotation about each axis. These values should

all lie in the range 0 to 360.

For example, we can make the listener do the equivalent of swivelling his chair to
face backwards with the line

ROTATE LISTENER, 0,180,0

The SCALE LISTENER Statement

The SCALE LISTENER statement does the equivalent of turning down the

listener's hearing sensitivity. In effect this can be used to turn down the volume on
all sounds that are playing or to be played. The statement has the format shown in

FIG-24.29.

In the diagram:

factor is a real value representing the scaling factor.

This value should lie between 0.0 and 1.0, with

1.0 being the default, normal value.

FIG-24.28

The ROTATE

LISTENER Statement

ROTATEROTATE x y zx y z, ,, ,LISTENERLISTENER

FIG-24.27

The POSITION

LISTENER Statement

POSITIONPOSITION x y zx y z, ,, ,LISTENERLISTENER

FIG-24.29

The SCALE

LISTENER Statement

SCALESCALE factorfactorLISTENERLISTENER

DarkBASIC Pro: Sound 623

Retrieving Data on 3D Sounds and the Listener

Another batch of statements is available to retrieve the various settings of both 3D

sounds and the listener. These are described below.

The SOUND POSITION X Statement

The x ordinate of a 3D sound can be determined using the SOUND POSITION X

statement which has the format shown in FIG-24.30.

In the diagram:

sndno is the number of the existing 3D sound object

whose x ordinate is to be returned.

The SOUND POSITION Y Statement

The y ordinate of a 3D sound can be determined using the SOUND POSITION Y
statement which has the format shown in FIG-24.31.

In the diagram:

sndno is the number of the existing 3D sound object

whose y ordinate is to be returned.

The SOUND POSITION Z Statement

The z ordinate of a 3D sound can be determined using the SOUND POSITION Z

statement which has the format shown in FIG-24.32.

In the diagram:

sndno is the number of the existing 3D sound object

whose z ordinate is to be returned.

FIG-24.30

The SOUND POSITION

X Statement

()()

real

SOUND XSOUND X sndnosndnoPOSITIONPOSITION

FIG-24.31

The SOUND POSITION

Y Statement

()()

real

SOUND YSOUND Y sndnosndnoPOSITIONPOSITION

FIG-24.32

The SOUND POSITION

Z Statement

()()

real

SOUND ZSOUND Z sndnosndnoPOSITIONPOSITION

624 DarkBASIC Pro: Sound

The LISTENER POSITION X Statement

The x ordinate of the listener can be discovered using the LISTENER POSITION

X statement whose format is shown in FIG-24.33.

The LISTENER POSITION Y Statement

The y ordinate of the listener can be discovered using the LISTENER POSITION

Y statement whose format is shown in FIG-24.34.

The LISTENER POSITION Z Statement

The z ordinate of the listener can be discovered using the LISTENER POSITION

Z statement whose format is shown in FIG-24.35.

The LISTENER ANGLE X Statement

The angle to which the listener has been rotated about the x-axis (i.e. forward or

backward) can be retrieved using the LISTENER ANGLE X statement which has

the format shown in FIG-24.36.

The LISTENER ANGLE Y Statement

The angle to which the listener has been rotated about the y-axis can be retrieved

using the LISTENER ANGLE Y statement which has the format shown in

FIG-24.37.

FIG-24.33

The LISTENER

POSITION X Statement

real

LISTENER XLISTENER XPOSITIONPOSITION ()()

FIG-24.34

The LISTENER

POSITION Y Statement

real

LISTENER YLISTENER YPOSITIONPOSITION ()()

FIG-24.35

The LISTENER

POSITION Z Statement

real

LISTENER ZLISTENER ZPOSITIONPOSITION ()()

FIG-24.36

The LISTENER

ANGLE X Statement

real

LISTENER XLISTENER XANGLEANGLE ()()

DarkBASIC Pro: Sound 625

The LISTENER ANGLE Z Statement

The angle to which the listener has been rotated about the z-axis can be retrieved

using the LISTENER ANGLE Z statement which has the format shown in

FIG-24.38.

Summary

l A 3D sound can appear to originate from anywhere in space - left, right, in front,

behind, below, or above the listener.

l A computer setup needs an appropriate sound card and speaker setup to create

3D sounds.

l The sound file used for 3D sound should be a mono file. The position of the

sound within space (that is, the 3D effect) is created by the sound card and

speakers.

l Use LOAD 3DSOUND to load a sound file to be used for 3D sound.

l Use POSITION SOUND to specify from where in space a sound should appear

to originate.

l Use POSITION LISTENER to place the listener at any point in space.

l Use ROTATE LISTENER to rotate the listener's position.

l Use SCALE LISTENER to adjust the listeners hearing sensitivity.

l SOUND POSITION X returns the x-ordinate of a specified sound's position.

l SOUND POSITION Y returns the y-ordinate of a specified sound's position.

l SOUND POSITION Z returns the z-ordinate of a specified sound's position.

l LISTENER POSITION X returns the x-ordinate of the listener's position.

l LISTENER POSITION Y returns the y-ordinate of the listener's position.

l LISTENER POSITION Z returns the z-ordinate of the listener's position.

FIG-24.37

The LISTENER

ANGLE Y Statement

real

LISTENER YLISTENER YANGLEANGLE ()()

FIG-24.38

The LISTENER

ANGLE Z Statement

real

LISTENER ZLISTENER ZANGLEANGLE ()()

626 DarkBASIC Pro: Sound

l LISTENER ANGLE X returns the listener's angle of rotation about the x-axis.

l LISTENER ANGLE Y returns the listener's angle of rotation about the y-axis.

l LISTENER ANGLE Z returns the listener's angle of rotation about the z-axis.

DarkBASIC Pro: Sound 627

Solutions
Activity 24.1

No solution required.

Activity 24.2

REM *** Load sound ***

LOAD SOUND "welcome.wav", 1

WAIT 500

REM *** Play sound ***

PLAY SOUND 1,20000

REM *** End program ***

WAIT KEY

END

Activity 24.3

REM *** Load sound ***

LOAD SOUND "welcome.wav", 1

WAIT 500

REM *** Loop sound ***

LOOP SOUND 1,20000,50000

REM *** End program ***

WAIT KEY

END

Activity 24.4

The sound resumes playing at the point it was paused but

does not loop.

Activity 24.5

REM *** Load sound ***

LOAD SOUND "demo.wav", 1

WAIT 500

REM *** Play at half speed ***

SET SOUND SPEED 1,11000

REM *** Play sound continuously ***

LOOP SOUND 1

REM *** Pause when key is pressed ***

WAIT KEY

PAUSE SOUND 1

REM *** Resume when key is pressed ***

WAIT KEY

REM *** Set to double speed ***

SET SOUND SPEED 1,44000

RESUME SOUND 1

REM *** End program ***

WAIT KEY

END

Activity 24.6

No solution required.

Activity 24.7

No solution required.

Activity 24.8

REM *** Specify file ***

LOAD SOUND "sample.wav",1

REM *** Start recording - 10 seconds ***

PRINT "Speak now "

RECORD SOUND 1,10000

REM *** Stop after 10s or key pressed ***

WAIT KEY

STOP RECORDING SOUND

REM *** Play back the recorded sound ***

PRINT "Replaying now..."

SLEEP 500

PLAY SOUND 1

REM *** Save the sound ***

PRINT "Saving recording to file"

SAVE SOUND "speech.wav",1

REM *** End program ***

WAIT KEY

END

A second attempt will fail since the file speech.wav

already exists this time round.

Activity 24.9

1) The message displayed is:

SOUND is playing

2) The message displayed is

SOUND is paused

3) No messages are displayed.

Activity 24.10

REM *** Load sound file ***

LOAD SOUND "demo2.wav", 1

REM *** Play sound file ***

PLAY SOUND 1

WAIT KEY

STOP SOUND 1

REM *** Get sound file’s status ***

playing = SOUND PLAYING(1)

looping = SOUND LOOPING(1)

paused = SOUND PAUSED(1)

REM *** Display details ***

IF playing = 1

PRINT "SOUND is playing"

ENDIF

IF looping = 1

PRINT "SOUND is looping"

ENDIF

IF paused = 1

PRINT "SOUND is paused"

ENDIF

PRINT "Volume setting : ",SOUND VOLUME(1)

PRINT "Speed setting : ",SOUND SPEED(1)

REM *** End program ***

WAIT KEY

END

Activity 24.11

The changes required are:

Add constants to identify the sound objects:

#CONSTANT firstasteroid 51

#CONSTANT ship 1

#CONSTANT firstmissile 101

#CONSTANT launchsound 1

#CONSTANT hitsound 2

Create the sound objects in InitialiseGame():

628 DarkBASIC Pro: Sound

FUNCTION InitialiseGame()

REM *** Set screen resolution ***

SET DISPLAY MODE 1280, 1024, 32

REM *** Magenta transparent ***

SET IMAGE COLORKEY 255,0,255

REM *** Load ship sprite ***

LOAD IMAGE "ship.bmp",2

SPRITE ship, SCREEN WIDTH()/2,

SCREEN HEIGHT()/2,2

OFFSET SPRITE ship,

SPRITE WIDTH(ship)/2,

SPRITE HEIGHT(ship)/2

lastfired = TIMER()

LOAD IMAGE "missilemag.bmp",3

missileno = firstmissile

REM *** Set all missile moves to zero ***

FOR c = 0 TO 9

missilemoves(c) = 0

NEXT c

REM *** Seed random number generator ***

RANDOMIZE TIMER()

REM *** Load sound objects ***

LOAD SOUND "launch.wav",launchsound

LOAD SOUND "explode.wav",hitsound

REM *** Create asteroids ***

CreateAsteroids()

REM *** position asteroids ***

StartPositionsForAsteroids()

ENDFUNCTION

Play the sound when a missile is launched:

FUNCTION LaunchMissile()

REM *** IF missile exists, exit ***

IF SPRITE EXIST(missileno)

EXITFUNCTION

ENDIF

REM *** Create a new missile sprite ***

REM *** Match position with ship ***

SPRITE missileno, SPRITE X(ship),

SPRITE Y(ship),3

OFFSET SPRITE missileno,

SPRITE WIDTH(missileno)/2,

SPRITE HEIGHT(missileno)/2

ROTATE SPRITE missileno,

SPRITE ANGLE(ship)

MOVE SPRITE missileno, 30

REM *** Play launch sound ***

PLAY SOUND launchsound

REM *** Record time missile was fired ***

lastfired = TIMER()

REM *** Add to missileno ***

missileno = missileno mod 10 +

firstmissile

ENDFUNCTION

Play sound when asteroid is hit:

FUNCTION HandleMissiles()

REM *** FOR each possible missile DO ***

FOR spriteno = firstmissile TO

firstmissile + 9

REM *** IF it exists, THEN ***

IF SPRITE EXIST(spriteno)

REM *** Move the sprite ***

MOVE SPRITE spriteno, 15

REM *** IF missile hits THEN ***

spritehit = SPRITE HIT(spriteno,0)

IF spritehit > 1

REM *** Play hit sound ***

PLAY SOUND hitsound

REM *** Delete sprites hit ***

DELETE SPRITE spritehit

DELETE SPRITE spriteno

REM *** Zeroise move count ***

post = spriteno - firstmissile

missilemoves(post)=0

ELSE

REM *** Inc missile moves ***

post = spriteno - firstmissile

INC missilemoves(post)

REM *** IF 40 moves, destroy ***

IF missilemoves(post) >= 40

DELETE SPRITE spriteno

missilemoves(post) = 0

ENDIF

ENDIF

ENDIF

NEXT spriteno

ENDFUNCTION

Activity 24.12

Reversing the FOR loop causes the sound to travel from

right to left.

Activity 24.13

No solution required.

Activity 24.14

No solution required.

Activity 24.15

LOAD 3DSOUND "laser.wav"

WAIT 500

LOOP SOUND 1

FOR x = -300 TO 300 STEP 100

FOR y = -300 TO 300 STEP 100

FOR z = -300 TO 300 STEP 100

POSITION SOUND 1, x, y, z

WAIT 1000

NEXT z

NEXT y

NEXT x

WAIT KEY

END

DarkBASIC Pro: Sound 629

	HODBProVol1_Part1
	HODBProVol1_Part10

