
Hands On DarkBASIC Pro

Alistair Stewart

A Self-Study Guide to Games Programming

Volume 2

Hands On DarkBASIC Pro
Volume 2

A Self-Study Guide to Games Programming

Alistair Stewart

Digital Skills

Milton
Barr
Girvan
Ayrshire
KA26 9TY

www.digital-skills.co.uk

Copyright © Alistair Stewart 2006

All rights reserved.

No part of this work may be reproduced or used in any form
without the written permission of the author.

Although every effort has been made to ensure accuracy, the
author and publisher accept neither liability nor responsibility
for any loss or damage arising from the information in this book.

All brand names and product names are trademarks of their respective
companies and have been capitalised throughout the text.

DarkBASIC Professional is produced by The Game Creators Ltd

Printed September 2006

Title : Hands On DarkBASIC Pro Volume 2

ISBN-10 : 1-874107-09-2
ISBN-13 : 978-1-874107-09-5

Other Titles Available:

Hands On DarkBASIC Pro Volume 1
Hands On Pascal
Hands On C++
Hands On Java
Hands On XHTML

TABLE OF CONTENTS

Chapter 30 3D Concepts and Terminology
The 3D World ...744

Introduction . 744

The Coordinate System . 744

Axes . 744

Planes . 745

Points . 746

World Units . 747

Local Axes . 747

Rotation . 748

3D Vectors . 748

Object Terminology . 749

Textures . 750

Images with an Alpha Channel 750

Cameras . 751

Lights . 752

Summary . 753

Chapter 31 3D Primitives
3D Primitives ..756

Introduction . 756

Creating a Cube . 756

The MAKE OBJECT CUBE Statement 756

Creating Other Primitives . 757

The MAKE OBJECT BOX Statement 757

The MAKE OBJECT SPHERE Statement 758

The MAKE OBJECT CYLINDER Statement 759

The MAKE OBJECT CONE Statement 760

The MAKE OBJECT PLAIN Statement 760

The MAKE OBJECT TRIANGLE Statement 761

Positioning an Object . 762

The POSITION OBJECT Statement 762

The MOVE OBJECT Statement 764

Rotating Objects - Absolute Rotation 765

The XROTATE OBJECT Statement 766

The YROTATE OBJECT Statement 767

The ZROTATE OBJECT Statement 767

The ROTATE OBJECT Statement 768

The SET OBJECT ROTATION Statement 769

Rotating Objects - Relative Rotation 769

The PITCH OBJECT Statement 770

The TURN OBJECT Statement 770

The ROLL OBJECT Statement 771

The POINT OBJECT Statement 771

The MOVE OBJECT distance Statement 772

The FIX OBJECT PIVOT Statement 773

Resizing Objects . 775

The SCALE OBJECT Statement 775

Showing and Hiding Objects . 776

The HIDE OBJECT Statement 776

The SHOW OBJECT Statement 776

The DELETE OBJECT Statement 777

The DELETE OBJECTS Statement 777

Copying a 3D Object . 778

The CLONE OBJECT Statement 778

The INSTANCE OBJECT Statement 779

Retrieving Data on 3D Objects . 779

The OBJECT EXIST Statement 779

The OBJECT POSITION Statement 780

The OBJECT VISIBLE Statement 780

The OBJECT SIZE Statement 781

The OBJECT ANGLE Statement 781

Controlling an Object's Rotation Using the Mouse 782

Wireframe and Culling . 783

The SET OBJECT WIREFRAME Statement 783

The SET OBJECT CULL Statement 784

Storage Methods . 785

The SET GLOBAL OBJECT CREATION Statement 785

Summary . 786

Merging Primitives..788

Introduction . 788

The Statements . 788

The PERFORM CSG UNION Statement 788

The PERFORM CSG DIFFERENCE Statement 790

The PERFORM CSG INTERSECTION Statement 790

Summary . 791

Solutions...792

Chapter 32 Texturing
Adding Texture ...798

Introduction . 798

Loading a Texture Image . 798

Using the Image as a Texture . 798

The TEXTURE OBJECT Statement 798

Mipmaps . 799

The LOAD IMAGE Statement Again 800

Tiling . 801

The SCALE OBJECT TEXTURE Statement 802

Seamless Tiling . 804

Video Texture . 805

The PLAY ANIMATION TO IMAGE Statement 805

Other Texture Effects . 807

The SET OBJECT TEXTURE Statement 807

The SCROLL OBJECT TEXTURE Statement 808

The SET OBJECT TRANSPARENCY Statement 810

The SET DETAIL MAPPING ON Statement 811

The SET OBJECT FILTER Statement 813

Summary . 814

Other Visual Effects ...815

Introduction . 815

Changing Colour and Transparency 815

The COLOR OBJECT Statement 815

The GHOST OBJECT ON Statement 816

The GHOST OBJECT OFF Statement 817

The FADE OBJECT Statement 817

Summary . 819

Images with an Alpha Channel ..820

Introduction . 820

Using Images with an Alpha Channel 820

Summary . 821

Creating a Complex 3D Shape ..822

Introduction . 822

Designing the Castle . 822

Gathering the Components 823

Creating the Code . 823

The Code . 824

Sky Spheres . 828

Summary . 830

Solutions...831

Chapter 33 Cameras
Camera Basics ...836

Introduction . 836

Positioning the Camera . 836

The POSITION CAMERA Statement 836

The MOVE CAMERA Statement 837

Changing the Viewpoint . 838

The POINT CAMERA Statement 838

The ROTATE CAMERA Statement 838

The SET CAMERA ROTATION Statement 840

The XROTATE CAMERA Statement 840

The YROTATE CAMERA Statement 841

The ZROTATE CAMERA Statement 841

The PITCH CAMERA Statement 842

The TURN CAMERA Statement 842

The ROLL CAMERA Statement 843

Retrieving Camera Data . 844

The CAMERA POSITION Statement 844

The CAMERA ANGLE Statement 844

Modifying Camera Characteristics 845

The SET CAMERA VIEW Statement 845

The SET CAMERA ASPECT Statement 846

The SET CAMERA FOV Statement 847

The SET CAMERA RANGE Statement 848

Summary . 849

Controlling Camera Movement...851

Introduction . 851

Automatic Camera Placement . 851

The AUTOCAM Statement . 851

Following the Action . 852

The SET CAMERA TO FOLLOW Statement 853

Giving the Player Control of the Camera 856

The CONTROL CAMERA USING ARROWKEYS Statement . . 856

The AUTOMATIC CAMERA COLLISION Statement 858

Controlling the Camera with the Mouse 859

Summary . 862

Multiple Cameras ...863

Introduction . 863

Using Additional Cameras . 863

The MAKE CAMERA Statement 863

The COLOR BACKDROP Statement 864

The BACKDROP Statement 864

The SET CURRENT CAMERA Statement 865

The DELETE CAMERA Statement 866

Switching Between Cameras 866

Multiple Camera Output . 868

The CLEAR CAMERA VIEW Statement 869

Summary . 870

Advanced Camera Techniques..871

Introduction . 871

The Statements . 871

The SET CAMERA TO IMAGE Statement 871

The SET CAMERA TO OBJECT ORIENTATION Statement . . 873

The SET OBJECT TO CAMERA ORIENTATION Statement . . 873

The LOCK OBJECT Statement 874

The SET VECTOR3 TO CAMERA POSITION Statement 875

The SET VECTOR3 TO CAMERA ROTATION Statement . . . 876

Summary . 876

Solutions...878

Chapter 34 Lighting
Lighting...886

Introduction . 886

Types of Lighting . 886

Ambient Lighting . 886

Point Lighting . 886

Spot Lighting . 886

Directional Lighting . 886

Lighting in DarkBASIC Pro . 887

The HIDE LIGHT Statement 887

The SHOW LIGHT Statement 888

The SET AMBIENT LIGHT Statement 888

The COLOR AMBIENT LIGHT Statement 889

The MAKE LIGHT Statement 889

The DELETE LIGHT Statement 890

The COLOR LIGHT Statement 890

The POSITION LIGHT Statement 891

The SET LIGHT RANGE Statement 891

The SET SPOT LIGHT Statement 892

The SET DIRECTIONAL LIGHT Statement 892

The SET POINT LIGHT Statement 893

The POINT LIGHT Statement 893

The ROTATE LIGHT Statement 895

The SET LIGHT TO OBJECT POSITION Statement 895

The SET LIGHT TO OBJECT ORIENTATION Statement 897

Retrieving Light Data . 898

The LIGHT EXIST Statement 898

The LIGHT VISIBLE Statement 899

The LIGHT RANGE Statement 899

The LIGHT TYPE Statement 899

The LIGHT POSITION Statement 900

The LIGHT DIRECTION Statement 900

Fog . 901

The FOG Statement . 901

The FOG COLOR Statement 902

The FOG DISTANCE Statement 902

The SET OBJECT FOG Statement 903

Summary . 904

Solutions...907

Chapter 35 Meshes and Limbs
Meshes...912

Introduction . 912

Handling Meshes . 912

The MAKE MESH FROM OBJECT Statement 912

The SAVE MESH Statement 913

The LOAD MESH Statement 914

The MAKE OBJECT Statement 914

The DELETE MESH Statement 915

The MESH EXIST Statement 915

Summary . 916

Limbs..917

Introduction . 917

Getting Started . 917

The ADD LIMB Statement . 917

The MAKE OBJECT FROM LIMB Statement 919

The OFFSET LIMB Statement 920

The ROTATE LIMB Statement 920

The SCALE LIMB Statement 922

The COLOR LIMB Statement 922

The TEXTURE LIMB Statement 923

The SCALE LIMB TEXTURE Statement 925

The SCROLL LIMB TEXTURE Statement 927

The HIDE LIMB Statement . 927

The SHOW LIMB Statement 928

The REMOVE LIMB Statement 928

The LINK LIMB Statement . 928

The CHANGE MESH Statement 931

The GLUE OBJECT TO LIMB Statement 931

The UNGLUE OBJECT Statement 934

The SET LIMB SMOOTHING Statement 934

Creating Doors . 935

Retrieving Limb Data . 936

The LIMB EXIST Statement 936

The LIMB VISIBLE Statement 937

The LIMB OFFSET Statement 937

The LIMB SCALE Statement 938

The LIMB ANGLE Statement 939

The LIMB POSITION Statement 939

The LIMB DIRECTION Statement 940

The PERFORM CHECKLIST FOR OBJECT LIMBS Statement . 944

The LIMB NAME$ Statement 945

The LIMB TEXTURE Statement 946

The LIMB TEXTURE NAME Statement 946

The CHECK LIMB LINK Statement 947

Saving a Model in DBO Format 947

Introduction . 947

The DBO File Format . 948

Creating an Elevator Model 948

The SAVE OBJECT Statement 949

The LOAD OBJECT Statement 950

Summary . 951

Solutions...953

Chapter 36 Importing 3D Objects
Importing 3D Objects..962

Introduction . 962

File Formats . 963

Statements for Loading and Using 3D Objects 963

The LOAD OBJECT Statement Again 963

The PLAY OBJECT Statement 965

The LOOP OBJECT Statement 966

The TOTAL OBJECT FRAMES Statement 966

Moving the Alien . 967

The SET OBJECT SPEED Statement 967

The STOP OBJECT Statement 968

The SET OBJECT FRAME Statement 968

The SET OBJECT INTERPOLATION Statement 969

The APPEND OBJECT Statement 970

Retrieving Animation Object Information 971

The OBJECT PLAYING Statement 971

The OBJECT LOOPING Statement 971

The OBJECT FRAME Statement 972

The OBJECT SPEED Statement 972

The OBJECT INTERPOLATION Statement 972

The OBJECT SIZE Statement 973

Limbs . 974

Summary . 975

Solutions...977

Chapter 37 Screen Control
User Control ...980

Introduction . 980

Selecting an Object . 980

The OBJECT SCREEN Statement 982

The PICK OBJECT Statement 983

The GET PICK DISTANCE Statement 984

The PICK VECTOR Statement 985

The PICK SCREEN Statement 986

The OBJECT IN SCREEN Statement 987

Selecting Objects using the Mouse 988

Summary . 990

Solutions...991

Chapter 38 Solitaire
Solitaire - The Board Game..994

Introduction . 994

The Equipment . 994

The Aim . 994

The Rules . 994

Creating a Computer Version of the Game 994

User Controls . 994

Game Responses . 995

Screen Layout . 995

Media Used . 995

Data Structures . 996

Adding SetUpScreen() . 999

Adding SetUpGame() . 1000

Adding CreateBoard() . 1001

Adding CreateInternalBoard() 1001

Adding CreateMarbles() . 1002

Adding CreateSelector() . 1002

Adding SetUpHelp() . 1003

Adding GetPlayerMove() . 1004

Adding MoveSelector() . 1006

Adding SelectMarble() . 1007

Adding SelectPit() . 1008

Adding IsValidMove() . 1008

Adding MoveMarble() . 1008

Adding SelectHelpPage() . 1009

Using the Mouse . 1009

Introduction . 1009

Updating the Program . 1010

Suggested Enhancements . 1013

Solutions...1015

Chapter 39 Advanced Lighting and Texturing
Advanced Lighting and Texturing...1028

Introduction . 1028

Surface Reflection . 1028

The SET OBJECT AMBIENT Statement 1029

The SET OBJECT DIFFUSE Statement 1030

The SET OBJECT SPECULAR Statement 1030

The SET OBJECT SPECULAR POWER Statement 1031

The SET OBJECT EMISSIVE Statement 1031

The SET OBJECT LIGHT Statement 1034

Mappings . 1035

The SET LIGHT MAPPING ON Statement 1035

The SET BUMP MAPPING ON Statement 1038

The SET SPHERE MAPPING ON Statement 1039

The SET BLEND MAPPING ON Statement 1041

The SET CUBE MAPPING ON Statement 1042

The SET ALPHA MAPPING ON Statement 1044

Shadows . 1045

The SET SHADOW SHADING ON Statement 1045

The SET SHADOW SHADING OFF Statement 1048

The SET GLOBAL SHADOWS Statement 1048

The SET GLOBAL SHADOW COLOR Statement 1050

The SET GLOBAL SHADOW SHADES Statement 1050

Positioning Shadows . 1051

The SET SHADOW POSITION Statement 1051

Shadows and Models . 1052

Other Shading Methods . 1054

The SET CARTOON SHADING ON Statement 1054

The SET RAINBOW SHADING ON Statement 1056

The SET REFLECTION SHADING ON Statement 1057

The SET SHADING OFF Statement 1058

Summary . 1058

Solutions...1061

Chapter 40 Collisions
Object Collisions ..1068

Introduction . 1068

Object Collision . 1068

The OBJECT HIT Statement 1069

The OBJECT COLLISION Statement 1070

The SET OBJECT COLLISION Statement 1070

The SET GLOBAL COLLISION Statement 1071

How Collision Detection Works . 1071

The SHOW OBJECT BOUNDS Statement 1072

The HIDE OBJECT BOUNDS statement 1072

Modifying Collision Detection . 1074

The SET OBJECT COLLISION TO SPHERES Statement . . . 1074

The SET OBJECT RADIUS Statement 1074

The OBJECT COLLISION RADIUS Statement 1075

The OBJECT COLLISION CENTER Statement 1075

The SET OBJECT COLLISION TO BOXES Statement 1076

The SET OBJECT COLLISION TO POLYGONS Statement . . 1076

The MAKE OBJECT COLLISION BOX Statement 1077

The GET OBJECT COLLISION Statement 1080

The DELETE OBJECT COLLISION BOX Statement 1082

The AUTOMATIC OBJECT COLLISION Statement 1082

The INTERSECT OBJECT Statement 1083

Summary . 1085

Static Collisions..1087

Introduction . 1087

Creating and Using Static Collision Boxes 1087

The MAKE STATIC COLLISION BOX Statement 1087

The GET STATIC COLLISION HIT Statement 1087

The GET STATIC COLLISION Statement 1089

The STATIC LINE OF SIGHT Statement 1093

The STATIC LINE OF SIGHT Coordinates Statement 1095

Static Collision Boxes and the Camera 1096

Summary . 1096

Solutions...1098

Chapter 41 Particles
Particles..1102

Introduction . 1102

Creating Particles . 1102

The MAKE PARTICLES Statement 1102

The HIDE PARTICLES Statement 1103

The SHOW PARTICLES Statement 1104

The DELETE PARTICLES Statement 1104

The POSITION PARTICLES Statement 1104

The POSITION PARTICLE EMISSIONS Statement 1105

The ROTATE PARTICLES Statement 1106

The COLOR PARTICLES Statement 1107

The SET PARTICLE EMISSIONS Statement 1108

The SET PARTICLE VELOCITY Statement 1109

The SET PARTICLE GRAVITY Statement 1110

The SET PARTICLE CHAOS Statement 1110

The SET PARTICLE SPEED Statement 1111

The SET PARTICLE FLOOR Statement 1112

The SET PARTICLE LIFE Statement 1113

The GHOST PARTICLES ON Statement 1113

The GHOST PARTICLES OFF Statement 1114

Retrieving Data on a Particles Object 1114

The PARTICLES EXIST Statement 1114

The PARTICLES POSITION Statement 1115

Particles Statements that use Vectors 1116

The SET VECTOR3 TO PARTICLES POSITION Statement . . 1116

The SET VECTOR3 TO PARTICLES ROTATION Statement . . 1116

Summary . 1116

Other Types of Particles...1118

Introduction . 1118

The Statements . 1118

The MAKE SNOW PARTICLES Statement 1118

The MAKE FIRE PARTICLES Statement 1119

Summary . 1120

Examples of Using Particles ..1121

Introduction . 1121

A Roman Candle . 1121

A Spaceship . 1122

A Dungeon Torch . 1122

Solutions...1124

Chapter 42 The Elevators Game
Elevators ..1128

Introduction . 1128

The Equipment . 1128

The Aim . 1128

The Rules . 1128

Creating a Computer version of the Game 1128

User Controls . 1128

Game Responses . 1128

Screen Layout . 1128

The Board Design . 1129

The Media Used . 1129

Data Structures . 1130

Game Logic . 1131

Adding SetUpGame() . 1132

Adding InitialiseData() . 1134

Adding InitialiseLifts() . 1134

Adding InitialiseBoard() . 1135

Adding InitialiseVisuals() . 1136

Loading Models and Texture Files 1136

Adding LoadBoard() . 1137

Adding AddElevators() . 1137

Adding LoadPlayerCharacter() 1138

Adding LoadDice() . 1138

Adding PositionCameras() . 1138

Adding RollDice() . 1142

Adding MovePlayer() . 1143

Adding UseElevator() . 1146

Adding MovePlayerToElevator() 1147

Adding TurnPlayer() . 1148

Adding MoveOntoPlatform() 1148

Adding MoveElevator() . 1148

Adding MoveOffPlatform() . 1149

Adding ReturnElevator() . 1150

Adding RepositionCamera() 1150

Fixing the Shortcomings . 1151

Fixing RepositionCamera() 1151

Fixing MovePlayer() . 1152

Fixing UseElevator() . 1153

Fixing MovePlayerToElevator() 1153

Fixing MoveElevator() . 1153

Adding EndGame() . 1154

Game Review . 1154

Solutions...1155

Chapter 43 Handling BSP Models
Binary Space Partitioning...1164

Introduction . 1164

Creating a BSP File . 1165

Using BSP Files . 1165

The LOAD BSP Statement . 1165

The SET BSP CAMERA COLLISION Statement 1167

The SET BSP OBJECT COLLISION Statement 1167

The SET BSP CAMERA COLLISION RADIUS Statement . . . 1169

The SET BSP OBJECT COLLISION RADIUS Statement 1169

The SET BSP COLLISION HEIGHT ADJUSTMENT Statement 1170

The SET BSP COLLISION THRESHOLD Statement 1171

The PROCESS BSP COLLISION Statement 1171

The SET BSP COLLISION OFF Statement 1171

The BSP COLLISION HIT Statement 1172

The BSP COLLISION Statement 1172

The SET BSP CAMERA Statement 1173

The DELETE BSP Statement 1173

The SET BSP MULTITEXTURING Statement 1173

Summary . 1173

Using a BSP Map...1175

Introduction . 1175

The Program . 1175

Solutions...1178

Chapter 44 Creating Terrain
Creating Terrain ...1180

Introduction . 1180

Documented Terrain Statements 1180

The MAKE TERRAIN Statement 1180

The DELETE TERRAIN Statement 1181

The POSITION TERRAIN Statement 1182

The TERRAIN POSITION Statement 1183

The TEXTURE TERRAIN Statement 1183

The GET TERRAIN HEIGHT Statement 1184

The GET TOTAL TERRAIN HEIGHT Statement 1186

The Advanced Terrain Statements 1186

The MAKE OBJECT TERRAIN Statement 1186

The SET TERRAIN HEIGHTMAP Statement 1187

The SET TERRAIN SCALE Statement 1187

The SET TERRAIN TEXTURE Statement 1188

The BUILD TERRAIN Statement 1188

The SET TERRAIN TILING Statement 1189

The SET TERRAIN LIGHT Statement 1190

The SET TERRAIN SPLIT Statement 1191

The GET TERRAIN GROUND HEIGHT Statement 1191

The GET TERRAIN SIZE Statement 1193

The SAVE TERRAIN Statement 1193

The LOAD TERRAIN Statement 1194

Terrains as Objects . 1195

Summary . 1195

Documented Statements . 1195

Undocumented (Advanced Terrain) Statements 1196

Terrain Project..1197

Introduction . 1197

Creating the Game . 1197

Constants and Global Variables 1198

Adding StartUpGame() . 1198

Adding PositionCamera() . 1199

Adding CreateScene() . 1199

Adding LoadTerrain() . 1199

Adding CreateSkyBox() . 1200

Adding LoadOcean() . 1200

Adding PlaceOrb() . 1201

Adding StartGame() . 1202

Adding ControlPlayer() . 1202

Adding EndGame() . 1203

Adding Testing Features . 1204

Solutions...1206

Chapter 45 Using Matrices
Matrices..1212

Introduction . 1212

Creating a Matrix . 1213

The MAKE MATRIX Statement 1213

The RANDOMIZE MATRIX Statement 1214

The UPDATE MATRIX Statement 1214

The SET MATRIX HEIGHT Statement 1215

The GET MATRIX HEIGHT Statement 1217

The GET GROUND HEIGHT Statement 1218

The SET MATRIX WIREFRAME Statement 1219

The MATRIX WIREFRAME STATE Statement 1220

Adding Texture to the Matrix . 1220

The PREPARE MATRIX TEXTURE Statement 1220

The FILL MATRIX Statement 1222

The SET MATRIX TILE Statement 1223

The SET TEXTURE TRIM Statement 1226

The SHIFT MATRIX Statement 1227

The MATRIX TILE COUNT Statement 1228

The MATRIX TILES EXIST Statement 1228

Positioning the Matrix in 3D Space 1229

The POSITION MATRIX Statement 1229

The MATRIX POSITION Statement 1230

Matrix Transparency . 1231

The GHOST MATRIX ON Statement 1231

The GHOST MATRIX OFF Statement 1232

The SET MATRIX PRIORITY Statement 1232

Lighting the Matrix . 1234

The SET MATRIX NORMAL Statement 1234

The SET MATRIX Statement 1235

The MATRIX EXIST Statement 1237

Summary . 1238

Solutions...1240

Chapter 46 Manipulating Vertices
Manipulating Vertices ...1246

Introduction . 1246

The Statements . 1246

The LOCK VERTEXDATA FOR MESH Statement 1246

The GET VERTEXDATA VERTEX COUNT Statement 1247

The GET VERTEXDATA POSITION Statement 1248

The SET VERTEXDATA POSITION Statement 1250

The UNLOCK VERTEXDATA Statement 1250

The LOCK VERTEXDATA FOR LIMB Statement 1251

The GET VERTEXDATA NORMALS Statement 1253

The SET VERTEXDATA NORMALS Statement 1254

The GET VERTEXDATA Statement 1255

The SET VERTEXDATA UV Statement 1256

The SET VERTEXDATA DIFFUSE Statement 1257

The GET VERTEXDATA DIFFUSE Statement 1258

Handling More Complex Shapes 1258

The ADD MESH TO VERTEXDATA Statement 1265

More About the Vertex Data Buffer's Structure 1266

The GET VERTEXDATA INDEX COUNT Statement 1267

The GET INDEXDATA Statement 1268

The SET INDEXDATA Statement 1270

The DELETE MESH FROM VERTEXDATA Statement 1271

Summary . 1272

Solutions...1274

Chapter 47 Accessing Memory
Accessing Memory ...1282

Introduction . 1282

Pointers . 1282

Creating Pointers in DarkBASIC Pro 1283

Assigning a Value to a Pointer 1283

The MAKE MEMBLOCK Statement 1283

The GET MEMBLOCK PTR Statement 1283

Using a Pointer . 1284

Using a Pointer to Return Values from a Function 1285

Larger Memory Blocks . 1286

The WRITE MEMBLOCK Statement 1286

The MEMBLOCK Statement 1287

The GET MEMBLOCK SIZE Statement 1288

The DELETE MEMBLOCK Statement 1288

The MEMBLOCK EXIST Statement 1288

The COPY MEMBLOCK Statement 1289

Strings and Memory Blocks 1290

The WRITE MEMBLOCK (to file) Statement 1292

The MAKE FILE FROM MEMBLOCK Statement 1294

The READ MEMBLOCK (from file) Statement 1294

The MAKE MEMBLOCK FROM FILE Statement 1296

Adding a New Top Score to our List 1296

Summary . 1297

Media Contents and Memory Blocks ...1299

Introduction . 1299

Bitmaps and Memory Blocks . 1299

The MAKE MEMBLOCK FROM BITMAP Statement 1299

The MAKE BITMAP FROM MEMBLOCK Statement 1301

Mapping a Screen Position to a Memory Block Location 1302

Mapping the Mouse Position to a Memory Block Location . . . 1303

Images and Memory Blocks . 1304

The MAKE MEMBLOCK FROM IMAGE Statement 1304

The MAKE IMAGE FROM MEMBLOCK Statement 1304

Sounds and Memory Blocks . 1305

The MAKE MEMBLOCK FROM SOUND Statement 1305

The MAKE SOUND FROM MEMBLOCK Statement 1307

3D Objects and Memory Blocks 1308

The MAKE MEMBLOCK FROM MESH Statement 1308

The MAKE MESH FROM MEMBLOCK Statement 1311

The CHANGE MESH FROM MEMBLOCK Statement 1312

Summary . 1313

Solutions...1314

Chapter 48 Open Dynamics Engine
Using ODE ...1318

Introduction . 1318

Basic ODE Statements . 1318

The ODE CREATE DYNAMIC BOX Statement 1318

The ODE START Statement 1319

The ODE END Statement . 1319

The ODE UPDATE Statement 1319

The ODE SET WORLD GRAVITY Statement 1320

The ODE CREATE STATIC BOX Statement 1321

The ODE CREATE DYNAMIC SPHERE Statement 1322

The ODE CREATE DYNAMIC CYLINDER Statement 1322

The ODE CREATE DYNAMIC TRIANGLE MESH Statement . . 1324

The ODE SET WORLD STEP 1325

The ODE CREATE STATIC TRIANGLE MESH Statement . . . 1325

The ODE SET WORLD ERP Statement 1326

The ODE SET WORLD CFM Statement 1327

The ODE SET CONTACT FDIR1 Statement 1328

The ODE SET LINEAR VELOCITY Statement 1328

The ODE SET ANGULAR VELOCITY Statement 1331

The ODE SET BODY ROTATION Statement 1332

The ODE SET BODY MASS Statement 1332

The ODE DESTROY OBJECT Statement 1334

The ODE GET BODY LINEAR VELOCITY Statement 1335

The ODE GET BODY HEIGHT Statement 1335

The ODE COLLISION MESSAGE EXISTS Statement 1336

The ODE COLLISION GET MESSAGE Statement 1336

The ODE GET OBJECT Statement 1336

The ODE GET OBJECT VELOCITY Statement 1337

The ODE GET OBJECT ANGULAR VELOCITY Statement . . . 1338

The ODE ADD FORCE Statement 1338

Surface Contact Statements . 1340

Summary . 1343

Solutions...1345

Chapter 49 Vectors and Matrices
3D Vectors..1350

Introduction . 1350

A Mathematical Description of 3D Vectors 1350

What is a 3D Vector in DarkBASIC Pro? 1351

Why do we need 3D Vectors? 1351

3D Vector Statements . 1351

The MAKE VECTOR3 Statement 1351

The SET VECTOR3 Statement 1352

Retrieving Data from a 3D Vector 1352

The DELETE VECTOR3 Statement 1353

The COPY VECTOR3 Statement 1353

The MULTIPLY VECTOR3 Statement 1354

The SCALE VECTOR3 Statement 1354

The DIVIDE VECTOR3 Statement 1355

The LENGTH VECTOR3 Statement 1355

The SQUARED LENGTH VECTOR3 Statement 1356

The ADD VECTOR3 Statement 1356

The SUBTRACT VECTOR3 Statement 1357

The DOT PRODUCT VECTOR3 Statement 1357

The NORMALIZE VECTOR3 Statement 1358

The IS EQUAL VECTOR3 Statement 1359

The MAXIMIZE VECTOR3 Statement 1359

The MINIMIZE VECTOR3 Statement 1360

The CROSS PRODUCT VECTOR3 Statement 1360

Summary . 1361

4D Vectors..1363

Introduction . 1363

Matrices..1365

Introduction . 1365

Matrix Statements . 1365

The MAKE MATRIX4 Statement 1365

The SET IDENTITY MATRIX4 Statement 1366

The IS IDENTITY MATRIX4 Statement 1366

Other Matrix Assignment Statements 1367

The COPY MATRIX4 Statement 1367

The IS EQUAL MATRIX4 Statement 1367

The ADD MATRIX4 Statement 1368

The SUBTRACT MATRIX4 Statement 1368

The DIVIDE MATRIX4 Statement 1368

The MULTIPLY MATRIX4 Statement 1369

The INVERSE MATRIX4 Statement 1370

The SCALE MATRIX4 Statement 1370

The TRANSLATE MATRIX4 Statement 1371

The ROTATE MATRIX4 Statement 1371

The TRANSPOSE MATRIX4 Statement 1372

The DELETE MATRIX4 Statement 1372

Summary . 1372

Solutions...1374

Chapter 50 Shaders
Shaders and FX Files...1376

Introduction . 1376

Vertex Shader . 1376

Pixel Shader . 1376

FX Files . 1377

Graphics Card Check Statements 1377

The GET MAXIMUM VERTEX SHADER VERSION Statement . 1377

The GET MAXIMUM PIXEL SHADER VERSION Statement . . 1377

FX Statements . 1378

The LOAD EFFECT Statement 1378

The EFFECT EXIST Statement 1378

��� ������	
��
�
��� ��� ����
� ������ ��������� . . . 1379

The SET OBJECT EFFECT Statement 1379

The SET EFFECT ON Statement 1380

The DELETE EFFECT Statement 1381

The SET LIMB EFFECT Statement 1381

The PERFORM CHECKLIST FOR EFFECT VALUES Statement1382

The SET EFFECT CONSTANT Statement 1383

The SET EFFECT TECHNIQUE Statement 1383

The SET EFFECT TRANSPOSE Statement 1384

Vertex Shader Statements . 1383

The CREATE VERTEX SHADER FROM FILE Statement . . . 1383

The SET VERTEX SHADER ON Statement 1385

The SET VERTEX SHADER OFF Statement 1385

The DELETE VERTEX SHADER Statement 1385

Other Vertex Shader Statements 1386

Pixel Shader Statements . 1386

Summary . 1386

FX Files . 1386

Shader Files . 1387

Solutions...1388

Chapter 51 Network Programming
Networked Games..1390

Introduction . 1390

Hardware Requirements . 1390

Getting Started . 1390

��� ������	
��
�
��� ��� ���
����
����� ��������� � 1391

TCP/IP . 1392

The SET NET CONNECTION Statement 1392

The CREATE NET GAME Statement 1394

Writing Code for the Client Machine 1395

The PERFORM CHECKLIST FOR NET SESSIONS Statement 1395

The JOIN NET GAME Statement 1396

The PERFORM CHECKLIST FOR NET PLAYERS Statement . 1397

Using a Single Machine as Both Host and Client 1498

Combining the Host/Client Requirements 1499

Communicating . 1401

The SEND NET MESSAGE Statement (Version 1) 1401

The GET NET MESSAGE Statement 1401

The NET MESSAGE EXISTS Statement 1402

The NET MESSAGE Statement (Version 1) 1402

The NET MESSAGE PLAYER FROM Statement 1403

The NET MESSAGE PLAYER TO Statement 1403

The SEND NET MESSAGE Statement (Version 2) 1404

The NET MESSAGE Statement (Version 2) 1405

The NET MESSAGE TYPE Statement 1406

The NET BUFFER SIZE Statement 1408

Session Dynamics . 1409

The NET PLAYER CREATED Statement 1409

The NET PLAYER DESTROYED Statement 1409

The NET GAME NOW HOSTING Statement 1411

The FREE NET GAME Statement 1411

The CREATE NET PLAYER Statement 1412

The FREE NET PLAYER Statement 1412

The NET GAME EXISTS Statement 1413

The NET GAME LOST Statement 1413

Summary . 1413

A Networked Game..1415

Introduction . 1415

A Non-Networked Version . 1415

Program Data . 1415

Game Logic . 1416

Adding SetUpPlayerDetails() 1417

Adding SetUpScreen() . 1417

Adding SetUpBoard() . 1417

Adding GetMove() . 1417

Adding GetMyMove() . 1418

Adding GetSquare() . 1418

Adding InRange() . 1418

Adding GetOpponentsMove() 1419

Adding CheckForWin() . 1419

Adding the Other Search Routines 1420

Adding EndGame() . 1422

Networking the Game . 1423

Updating the main section . 1423

Adding WaitForSecondPlayer() 1423

Adding NumberOfPlayers() 1423

Modifying the Call to SetUpPlayerDetails() 1424

Modifying GetMyMove() . 1424

Modifying GetOpponentsMove() 1424

Modifying EndGame() . 1425

A Complete Listing . 1425

Solutions ..1431

Chapter 52 Using File Transfer Protocol
Internet File Transfers ..1436

Introduction . 1436

The Instructions . 1436

The FTP CONNECT Statement 1436

The GET FTP FAILURE Statement 1436

The GET FTP ERROR$ Statement 1437

The GET FTP STATUS Statement 1437

The FTP SET DIR Statement 1438

The GET FTP DIR$ Statement 1438

The FTP FIND FIRST Statement 1438

The FTP FIND NEXT Statement 1439

The GET FTP FILE TYPE Statement 1439

The GET FTP FILE NAME$ Statement 1439

The GET FTP FILE SIZE Statement 1439

The FTP DISCONNECT Statement 1440

The FTP GET FILE Statement 1440

The FTP PROCEED Statement 1441

The GET FTP PROGRESS Statement 1442

The FTP TERMINATE Statement 1442

The FTP DELETE FILE statement 1442

The FTP PUT FILE Statement 1443

Summary . 1443

Chapter 53 Dynamic Link Libraries
Creating New DBPro Statements...1446

Introduction . 1446

A Dynamic Link Library (DLL) . 1446

Creating a DLL . 1446

Starting Up Visual Studio . 1446

Adding the Code for New Statements 1448

Adding a String Table . 1449

Constructing the Caption . 1450

Adding the New Statements to DarkBASIC Pro 1451

Adding Help . 1452

Adding More New Commands . 1456

Functions that Return Real Values 1456

Functions that Return Strings 1456

More String Handling Functions 1459

Summary . 1460

Using Standard DLLs ...1462

Introduction . 1462

The LOAD DLL Statement . 1463

The DLL EXIST Statement . 1463

The CALL DLL Statement . 1463

The DLL CALL EXIST Statement 1464

The DELETE DLL Statement 1464

Summary . 1465

Solutions...1467

Acknowledgements

I would like to thank all those who helped me prepare the final draft of this book.

In particular, Virginia Marshall who proof-read the original script and Michael Kerr
who did an excellent job of checking the technical contents. Mark Armstrong
researched all the difficult bits for me and produced almost as much in the way of
notes as is in this final text.

Any errors that remain are probably due to the usual extra paragraphs I added after
all the proof-reading was complete!

Thanks also to The Game Creators Ltd for producing an excellent piece of software
- DarkBASIC Professional.

Many of the 3D models and textures are from The Game Creators Dark Matter 1
package and used with their kind permission.

Finally, thank you to every one of you who has bought this book. Any constructive
comments would be most welcome.

Email me at alistair@digital-skills.co.uk.

Introduction

Welcome to the second volume of a book that I hope is a little different from any
other you've come across before. Instead of just telling you about software design
and programming, it makes you get involved. There's plenty of work for you to do
since the book is full of exercises - most of them programming exercises - but you
also get a full set of solutions, just in case you get stuck!

If you've worked your way through Volume 1, then you should have gained a good
grounding in, not only DarkBASIC Pro, but also professional programming skills.

Most of Volume 2 is dedicted to 3D graphics but there a few other interesting topics
such as network programming and how to create your own DarkBASIC commands.

Learn by Doing

The only way to become a programming expert is to practice. No one ever learned
any skill by just reading about it! Hence, this is not a text book where you can just
sit back in a passive way and read from cover to cover whilst sitting in your favourite
chair. Rather it is designed as a teaching package in which you will do most of the
work.

The tasks embedded in the text are included to test your understanding of what has
gone before and as a method of helping you retain the knowledge you have gained.
It is therefore important that you tackle each task as you come to it. Also, many of
the programming exercises are referred to, or expanded, in later pages so it is
important that you are familar with the code concerned.

What You Need

You'll obviously need a PC and a copy of DarkBASIC Pro.

At this stage you'll also need some programming skills and a basic knowledge of
DarkBASIC Pro.

How to Get the Most out of this Text

Experience has shown that readers derive most benefit from this material by
approaching its study in an organised way. The following strategy for study is highly
recommended:

1. Read a chapter or section through without taking notes or worrying
too much about topics that are not immediately clear to you. This will
give you an overview of the contents of that chapter/section.

2. Re-read the chapter. This time take things slowly; make notes and
summaries of the material you are reading (even if you understand the
material, making notes helps to retain the facts in your long-term
memory); re-read any parts you are unclear about.

3. Embedded in the material are a series of activities. Do each task as you
reach it (on the second reading). These activities are designed to test
your knowledge and understanding of what has gone before. Do not be
tempted to skip over them, promise to come back to them later, or to

make only a half-hearted attempt at tackling them before looking up
the answer (there are solutions at the end of each chapter). Once you
have attempted a task, look at the solution given. Often there will be
important points emphasised in the solution which will aid higher
understanding.

4. As you progress through the book, go back and re-read earlier chapters,
since you will often get something new from them as your knowledge
increases.

Syntax Diagrams

The format of each statement is explained using a syntax diagram. Raised tiles
represent keywords of the language while sunken tiles are parts of the statement for
which you are free to create your own values. Parts within square brackets are
optional while braces represent a choice of options. Statements that return a value
show this using an arrowed line and the type of value returned.

Line Continuation Symbol

Occasionally, a single programming instruction has to be split over two or more
lines because of limited page width. In such cases the second line(and subsequent
lines) begins with the� symbol. For example, the instruction

POSITION OBJECT 2,OBJECT POSITION X(2),OBJECT POSITION Y(2)-0.1,OBJECT POSITION Z(2)+0.1

might appear as

POSITION OBJECT 2,OBJECT POSITION X(2),
�OBJECT POSITION Y(2)-0.1,OBJECT POSITION Z(2)+0.1

In such cases you should enter the code as a single line when creating a DarkBASIC
Pro program.

()()

real

X

Y

Z

X

Y

Z

OFFSETOFFSETLIMBLIMB objnoobjno ,, limbnolimbno

Raised tiles
represent keywords

Sunken tiles
represent programmer-assigned

values

Braces represent choice

An arrowed line
indicates that the

statement returns a value

30

3D Coordinate System

3D Primitives

3D Vectors

Cameras

Lights

Vertex and Surface Normals

Rotation

Textures

The Major Planes in 3D

Vertices, Edges and Polygons

Wireframe Models

World Units

DarkBASIC Pro: 3D - Concepts and Terminology 743

The 3D World

Introduction
Welcome to the world of 3D. Of course, we can create great games in 2D - many
people still consider 2D games like Space Invaders and Pac-Man to be some of the
best games ever invented - but for sheer eye candy you really can't beat 3D.

In this chapter we'll get a broad view of the 3D world created by computers. We'll
cover the basic concepts and define some of the terms. Many of these concepts will
be explained in greater detail in later chapters as we discover how DarkBASIC Pro
implements many of these ideas.

The Coordinate System

Axes

In a 3D world, just as in a 2D one, we need to identify the position of any point
within that world. This we do using three axes (known as world axes) for reference.
As before, we need x and y axes for width and height, but this time we also need a
z axis to measure depth (see FIG-30.1).

In the figure above, the axes have been skewed slightly to give a better perspective
In reality the x-axis runs across the screen, the y-axis runs up and down, and the
z-axis points directly out of the screen (-z) and into the screen (+z) (see FIG-30.2).

FIG-30.1

The Axes used in 3D
+y

-y

+x

-x

+z

-z

744 DarkBASIC Pro: 3D - Concepts and Terminology

Planes

In mathematics, a plane is a flat surface with only two dimensions. 3D space has
three main planes: the X-Y plane, the X-Z plane and the Y-Z plane (see FIG-30.3).

FIG-30.2

3D Axes and the Viewer

+y

-y

+x

+z

The computer
screen

-x

-z

The viewer

FIG-30.3

The Main 3D Planes

+y

-y

+x

-x
+z

-z

The
X-Y Plane

+y

-y

+x

-x
+z

-z

The
X-Z Plane

-x
+z

-z

+y

-y

+x

-x

+z

-z

The
Y-Z Plane

-y

DarkBASIC Pro: 3D - Concepts and Terminology 745

The X-Y plane has the x and y axes passing through its centre and, like every plane,
expands to infinity in all directions. The X-Z plane has the x and z axes at its centre,
and the Y-Z plane has the y and z axes at its centre.

These three planes are important since each divides space into two equally sized
areas. The X-Y plane splits space with one half to the front, the other half to the
back. The X-Z planes splits space into above and below sections, and the Y-Z plane
splits space into left and right sections.

With all three planes in place, space is split into eight equally-sized sections. Each
of these sections is known as an octant.

Of course, not all planes lie on axes; there are an infinite number of planes, some
parallel to the main planes, others at angles to those planes, but it is the main planes
that will be useful in many of the calculations required when determining the
position of an object in 3D space.

Points

To specify the position of a point in 3D space we state its distance from the origin
along all three axes in the order, x, y, z (see FIG-30.4).

FIG-30.4

Determining the Position of a
Point in 3D Space

+y

-y

+x

-x

+z

-z

P

1
Measure the point’s

distance out from the
origin along the x-axis

A point in
space

+y

-y

+x

-x

+z

-z

P

2
Measure the point’s

distance out from the
origin along the y-axis

746 DarkBASIC Pro: 3D - Concepts and Terminology

We might, for example, state that point p is at the position (8,12,5) meaning that
point p is 8 units along the x-axis, 12 units along the y-axis and 5 units along the
z-axis.

World Units

Distances are measured in units. These units have no relationship to real-life
measurements such as centimetres or inches. Instead, objects are constructed in such
a way as to be the correct size relative to other objects. For example, if we make a
human character 6 units high, then a simple house might be 18 to 25 units high. Of
course, if you wish, you can think of 1 unit being the equivalent of a real distance.
The scale you choose will depend on the context; when creating a world with an
ant as the main character, 1 unit might be equivalent to a millimetre, while a truly
interstellar game might make 1 unit equivalent to 1 light year.

Local Axes

Every 3D object we create has its own local axes. These axes are (initially, at least)
aligned to the world axes. FIG-30.5 shows a cuboid and its local axes.

FIG-30.4
(continued)

Determining the Position of a
Point in 3D Space

-x

+y

-y

+x
-x

+z

-z

P

3
Measure the point’s

distance out from the
origin along the z-axis

FIG-30.5

Each Object has its
Own Local Axes

-x

+y

-y

+x

+z

-z

Each 3D object
has its own local

axes parallel to the
world axes

DarkBASIC Pro: 3D - Concepts and Terminology 747

Rotation

An object can be made to rotate about its own, local, axes. In DarkBASIC Pro
rotation is measured in degrees. For example, we might rotate an object 30 degrees
about it's x-axis as shown in FIG-30.6.

Rotation is performed in a clockwise direction when viewed down the positive end
of an axis (see FIG-30.7).

By specifying a negative angle of rotation, an object will rotate anti-clockwise.

3D Vectors
Although the purpose of this chapter is to describe basic 3D concepts, it's worth
mentioning that DarkBASIC Pro allows the creation of a 3-element vector
specifically for storing the coordinates of a point in 3D space. The vector is created
using the MAKE VECTOR3 statement which has the format shown in FIG-30.8.

In the diagram:

vectno is an integer value giving the ID to be assigned
to the 3D vector being created.

The statement returns 1 if the vector is created successfully; otherwise zero is
returned. Usually we won't worry about the value returned and can create a 3D
vector with a statement such as:

result = MAKE VECTOR3(1)

FIG-30.6

A Cuboid is Rotated
30o about the x-axis

Z-axis X-axis

Y-axisInitial Position

Z-axis X-axis

Y-axis
Rotated 30 about
the x-axis

o

FIG-30.7

Clockwise Rotation

Rotation is in a
clockwise direction

when viewed from
the positive end of

an axis

Axis

FIG-30.8

The MAKE VECTOR3
Statement

VECTOR3VECTOR3 ()()

integer

MAKEMAKE vectnovectno

748 DarkBASIC Pro: 3D - Concepts and Terminology

We can visualise a 3D vector object as shown in FIG-30.9.

Many of the DarkBASIC Pro statements we'll encounter later make use of 3D
vectors for storing results, so it's useful to give you this quick grounding in them at
this early stage. We'll learn more on this subject in a later chapter.

Object Terminology
Just as 2D has a few basic shapes such as a line, a circle, a triangle and a rectangle,
so we have a set of basic shapes (known as primitives) in 3D. These include the
sphere, cylinder, cone, and cube. In FIG-30.10 we see and example of a cube.

The cube is shown in two ways: solid, with shading caused by the light falling on
its surface, and wireframe showing how the cube is constructed.

Polygon is the term used for a many-sided enclosed area. The simplest polygon
(that is, the one with the least sides) is the triangle. The point where two lines of a
polygon meet is known as a vertex. A triangle has three vertices (see FIG-20.11).

The line between two vertices is known as an edge (see FIG-30.12).

Every 3D shape in a game is constructed from polygons (normally triangles), as
you can see from the wireframe version of the cube shown in FIG-30.10.

The greater the number of polygons used to create an object, the more detailed and
realistic it will appear (see FIG-30.13). But there is a price to pay for greater detail

FIG-30.10

A Cube - An Example of
a Primitive

solid wireframe

FIG-30.9

A 3D Vector

x y z

4.612.3 1.7

A 3D Vector

The 3D vector
holds three values...

...an value,
a value

and a value

x
y

z

FIG-30.11

The Vertices of a
Triangle Vetrices

Triangle

FIG-30.12

Edges

Edges

DarkBASIC Pro: 3D - Concepts and Terminology 749

- higher processing requirements. As you increase the number of polygons that go
to make up the objects in your scene, the harder your processor and video card need
to work. Ask too much of your hardware, and screen updating will slow down. The
number of times the screen is redrawn in one second is known as the frame rate
and is quoted in frames per second (fps). If the frame rate falls much below about
20 fps, then your eyes will become aware of the screen refreshing and the picture
will become jerky.

Textures

In solid mode (as opposed to wireframe), a 3D object has a bland grey surface, but
we can use an image wrapped around that object to give it a greater reality. By
wrapping the image of riveted steel plate round a sphere, we can create the illusion
of a metal ball. Wrap an image of wooden planks round the same sphere and we
create a wooden ball (see FIG-30.14).

Images with an Alpha Channel

The image used to texture an object can be one of many different formats. For
example, JPG and BMP files are often used, but sometimes we will see images
stored in the PNG or TGA format.

PNG and TGA files are amongst those formats capable of embedding an alpha
channel within the image. An alpha channel affects how visible an image is and is
probably best explained with an analogy.

Imagine you've just painted an image on a piece of glass and that the light
illuminating the picture comes from behind the glass (see FIG-30.15) - like looking

FIG-30.13

Varying the Polygons in
a Sphere

A Sphere with Few Polygons A Sphere with Many Polygons

FIG-30.14

Adding Texture to a 3D
Object

750 DarkBASIC Pro: 3D - Concepts and Terminology

out through a church's stained-glass window.

If we were to paint the back of the glass black, no light would get through and we
wouldn't see the picture. If we used grey paint rather than black, then some light
would get through. If we painted a pattern on the back of the glass using a mixture
of black, dark grey, and light grey paint, the image would appear to have bright,
dull and black areas depending on the paint on the back of the image.

This is how the alpha channel of an image works. As well as the basic red, green
and blue elements (or channels) that go to make up the image, a fourth, alpha,
channel is added. This is just another layer to the image which can only be shaded
using greyscale colours (white through to black). Where black is used, the original
image is unseen; where white is used the image appears at normal brightness (this
is where the glass analogy falls down since it would be at its brightest with no paint
on the back of the glass). Shades of grey give varying degrees of image brightness.
FIG-30.16 shows original images, alpha channels, and the overall effects created.

Cameras

The real world is a vast place, but with the help of television we can view any part
of it - all we need is a camera. What the TV camera broadcasts we see on our screens.
Move the camera and we see a different part of the world.

This is exactly how the 3D world we create within the computer works; what we
see on the computer screen is the output from a virtual camera. The camera can be
moved, just like a real camera, revealing different parts of our new 3D world. We
can zoom the camera in or out allowing us to enlarge a distant object or show
everything within a small space.

FIG-30.15

Perceived Image
Depends on the Backing

Light Source

Back of Glass

Front of Glass

The image seen at
the front of the glass
depends on the paint

used on the back

FIG-30.16

Using an Alpha Channel

DarkBASIC Pro: 3D - Concepts and Terminology 751

We can even use several cameras, switching between each to change what the user
is seeing on the screen. Unlike real life, there's never any chance of seeing a camera
in the view produced by a second camera - all virtual cameras are invisible!

DarkBASIC Pro creates and positions a single camera automatically at the start of
every program that uses 3D objects. The exact position of the camera depends on
the positioning of the 3D objects, since the camera normally places itself in order
to see the objects that have been created. However, as the programmer, you can take
complete control of the camera and thereby determine just exactly what appears on
the screen.

Lights

We can even set up the lights we want to use to illuminate our new world - just like
placing lights on a movie set. By positioning various types of lights in just the
correct positions, we can create any type of atmosphere we want - from dark and
mysterious to bright and sunny. Like cameras in the 3D world, the lights are
invisible, but the effects they create are not!

To help calculate the effect of lights on the individual polygons of a 3D object, a
set of normals are maintained. A surface normal is a vector from the centre of a
polygon perpendicular to the surface of that polygon. Every polygon in an object
has an associated normal (see FIG-30.17).

Normals are stored as mathematical expressions and are not part of the visible
structure of the model.

In principal every polygon can have two surface normals: one on the top side and
one on the bottom. However, often models only use a single normal - on the side
facing outwards.

When using surface normals to calculate how an object should be lit, we sometimes
get a rather faceted appearance, with an obvious jump in shading from one polygon
to the next (see FIG-30.18).

FIG-30.17

Surface Normals

A normal for
each polygon

FIG-30.18

Visible Polygons

752 DarkBASIC Pro: 3D - Concepts and Terminology

To solve this, vertex normals may be used. A vertex normal is created at every
vertex of a polygon (see FIG-30.19).

These vertex normals are calculated from the values of the two edges which meet
at that vertex.

Using vertex normals creates a smoother lighting effect, but requires more
calculations. You can see the effect produced in FIG-30.20.

Activity 30.1

Load and run the program basic3D.exe. This will demonstrate some of the
basic concepts covered in this chapter.

(You can download this program, and all other files used in this text from
www.digital-skills.co.uk)

As we'll see in the chapters that follow, DarkBASIC Pro has literally hundreds of
commands designed to help us create a 3D world and manipulate the objects in that
world.

Summary
� The 3D world uses three axes: x, y and z.

� 3D space is split into eight octants by the X-Y, X-Z and Y-Z planes.

FIG-30.19 Vertex Normals

Vertex normal Vertex normal

Vertex normal

Vertex normal

Vertex normal

Vertex normal Vertex normal

Vertex normal Vertex normal

Every vertex in a polygon has a
vertex normal.

When two or more polygons have common vertices, that vertex has a separate
vertex normal for each of the polygons that share the vertex.

FIG-30.20

Polygon Smoothing

DarkBASIC Pro: 3D - Concepts and Terminology 753

� Space within the 3D world is measured in world units. These do not relate to real
world units.

� A point in 3D space is defined by its distance along each of the axes.

� 3D objects have their own local axes.

� 3D objects can be rotated about their own local axes.

� Rotations are measured in degrees.

� Rotation is in a clockwise direction (as viewed from the positive end of the axis
of rotation).

� DarkBASIC Pro provides 3D vector objects in which the coordinates of a point
in 3D space can be stored.

� 3D objects are constructed from polygons.

� The simplest polygon is the triangle.

� The end of a line within a polygon is known as a vertex.

� The line between two vertices is known as an edge.

� More detailed objects require more polygons.

� Increasing the number of polygons used in a scene increases the load on the
computer.

� When faced by a heavy load, the computer will output at a reduced frame rate.

� Images can be used to texture a 3D shape to increase realism.

� Some images can contain alpha channels which effect lightness when the image
is used to texture a surface.

� Virtual cameras determine which parts of the 3D world are shown on the screen.

� Lights can be added to a scene to help create the desired atmosphere.

� The effects of lights on a surface are calculated using surface normals or vertex
normals.

� Every polygon has an associated surface normal.

� A surface normal is a vector at right angles to its polygon.

� Using surface normals to calculate shading can result in a patchy effect.

� Every vertex of a polygon has an associated vertex normal.

� Vertex normals may be used to create smoother shading effects, but at the cost
of more complex calculations.

.

754 DarkBASIC Pro: 3D - Concepts and Terminology

Absolute and Relative Object Movement

Global and Local Axes

Creating 3D Primitives

Culling

Deleting 3D Primitives

Duplicating 3D Objects

Merging Objects

Pointing an Object in a Specific Direction

Positioning 3D Objects

Retrieving 3D Object Data

Rotating 3D Objects

Resetting Local Axes

Resizing 3D Objects

Showing and Hiding 3D Objects

Wireframe Mode

31

DarkBASIC Pro: 3D Primitives 755

3D Primitives

Introduction
DarkBASIC Pro contains several statements for creating and manipulating 3D
primitives such as spheres, cones and cubes. These statements are explained in detail
below. A sample of the possible shapes is shown in FIG-31.1.

Creating a Cube

The MAKE OBJECT CUBE Statement

To create a cube on the screen, we use the MAKE OBJECT CUBE statement. Like
sprites, every 3D object created must be given an identifying integer value (its ID).
No two 3D objects within a program can be assigned the same ID. The size of the
cube is also defined in this statement, which has the format shown in FIG-31.2.

In the diagram:

objno is an integer value giving the ID to be assigned to the cube.

size is a real value specifying the width, height and depth of the
cube. This value is given in world units.

A typical usage of this statement might be:

MAKE OBJECT CUBE 1, 10

This would create a cube (with ID 1) which is 10 units wide, by 10 units high, by
10 units deep. FIG-31.3 shows a screen shot of the resulting cube.

This may not look too impressive as a 3D object, but that’s because we’re looking
at the cube straight on and therefore can only see the front face of the object.

FIG-31.3

A Cube in DarkBASIC Pro

FIG-31.2

The MAKE OBJECT
CUBE Statement

OBJECT CUBEOBJECT CUBE objnoobjnoMAKEMAKE sizesize,,

FIG-31.1

The 3D Shapes that can
be Created in
DarkBASIC Pro

756 DarkBASIC Pro: 3D Primitives

The cube shown above was created using the program given in LISTING-31.1.

REM *** Set display resolution and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON

REM *** Make the cube ***
MAKE OBJECT CUBE 1,10

REM *** End program ***
WAIT KEY
END

Activity 31.1

Type in the program in LISTING-31.1 (object3D01.dbpro) and check that you
get the same display as shown above.

When any of the 3D primitives is first created, its centre is positioned at the origin.
FIG-31.4 shows a model of what has been created by the program in LISTING-31.1.
The 3 axes and parts of the XZ and YZ planes have been included to give a clearer
picture of how the cube is positioned.

Creating Other Primitives
DarkBASIC Pro has a set of similar MAKE statements to create other basic 3D
shapes. Like the cube, all of these objects are initially positioned with their centres
at the origin. These statements are described below.

The MAKE OBJECT BOX Statement

The MAKE OBJECT BOX statement is similar to the MAKE OBJECT CUBE
statement, but allows the three dimensions of the object to be set separately. The
statement has the format shown in FIG-31.5.

LISTING-31.1

Creating a Cube

Statements such as
COLOR BACKDROP
and BACKDROP ON
were covered in Volume
1.

FIG-31.4

How the Cube is
Positioned by the
Program

x-axis

y-axis

z-axis

10 units10 units 10
units

The centre of the cube
is at the origin

DarkBASIC Pro: 3D Primitives 757

In the diagram:

objno is an integer value giving the ID to be assigned to the box
being created. No other 3D object in the program can be
assigned the same value.

w is a real value giving the width (x-dimension) of the box.

h is a real value giving the height (y-dimension) of the box.

d is a real value giving the depth (z-dimension) of the
box.

For example, the line
MAKE OBJECT BOX 2, 10, 3.7, 12

would create a box with ID 2 which is 10 units wide, by 3.7 units high, by 12
units deep.

The MAKE OBJECT SPHERE Statement

The MAKE OBJECT SPHERE statement creates a sphere of a specified diameter
but offers extra options. The statement has the format shown in FIG-31.6.

In the diagram:

objno is an integer value giving the ID assigned to the
sphere being created.

diameter is a real number representing the diameter of the
sphere.

rows is an integer value specifying the number of lines
of latitude making up the sphere.

columns is an integer value specifying the number of lines
of longitude making up the sphere.

The statement

MAKE OBJECT SPHERE 3,40.0

would create a sphere with a diameter of 40 units and assign it the ID number 3.
However, the sphere produced is constructed from a relatively small number of
polygons and hence its curve is not particularly smooth. By using the rows and
columns values, we can control the number of polygons used to construct the sphere
and thereby produce a more realistic effect. For example, the line

FIG-31.5

The MAKE OBJECT
BOX Statement

OBJECT BOXOBJECT BOX objnoobjnoMAKEMAKE ,, w h dw h d, ,, ,

FIG-31.6

The MAKE OBJECT SPHERE Statement

OBJECT SPHEREOBJECT SPHERE objno columnsrowsobjno columnsrowsMAKEMAKE diameterdiameter, ,,, ,,

758 DarkBASIC Pro: 3D Primitives

MAKE OBJECT SPHERE 3,40.0,100,100

would create a much smoother sphere. FIG-31.7 shows the difference between the
default sphere and the more detailed one.

However, there's a price to be paid for the more detailed sphere; the more polygons
we use when creating any 3D shape, the more work the processor/video card needs
to do and this reduces the frames per second that can be achieved.

Activity 31.2

Modify your previous program so that a standard sphere (diameter 10) is
created instead of a cube.

Modify the sphere to have 40 columns by 40 rows.

The MAKE OBJECT CYLINDER Statement

A cylinder of a specified height can be created using the MAKE CYLINDER
OBJECT statement. The diameter of the cylinder’s base automatically matches the
height. The statement has the format shown in FIG-31.8.

In the diagram:

objno is the integer value assigned to the cylinder being
created.

h is a real value giving the height and diameter of
the cylinder.

FIG-31.7

Creating a Smoother
Sphere

CREATE OBJECT SPHERE 3, 40.0 CREATE OBJECT SPHERE 3, 40.0,100,100

The number of polygons
used has greatly increased

FIG-31.8

The MAKE OBJECT
CYLINDER Statement

OBJECT CYLINDEROBJECT CYLINDER objnoobjnoMAKEMAKE ,, hh

DarkBASIC Pro: 3D Primitives 759

For example, we could make a cylinder of height 31.5 units using the statement:

MAKE OBJECT CYLINDER 4,31.5

The MAKE OBJECT CONE Statement

The MAKE OBJECT CONE statement creates a cone of a specified height. The
diameter of the base automatically matches the height. This statement has the format
shown in FIG-31.9.

In the diagram:

objno is the integer value assigned to the cone being
created.

h is a real value giving the height of the cone and
the diameter of its base.

For example, we could make a cone of height 10.1 units using the statement:

MAKE OBJECT CONE 5,10.1

Activity 31.3

Modify your previous program to display a cylinder of diameter 5.

Modify the program again to show a cone of the same height as the cylinder.

The MAKE OBJECT PLAIN Statement

A flat plane standing on the XY plane can be constructed using the MAKE OBJECT
PLAIN statement which has the format shown in FIG-31.10.

In the diagram:

objno is the integer value assigned to the plane being
created.

w is a real value giving the width of the plane.

h is a real value giving the height of the plane.

For example, we could create a plane which is 1000 units wide by 500 high using
the line:

MAKE OBJECT PLAIN 6,1000.0,500.0

The centre of the plane will be located at the origin (see FIG-31.11).

FIG-31.9

The MAKE OBJECT
CONE Statement

OBJECT CONEOBJECT CONE objnoobjnoMAKEMAKE ,, hh

FIG-31.10

The MAKE OBJECT
PLAIN Statement

OBJECT PLAINOBJECT PLAIN objnoobjnoMAKEMAKE ,, hh,, ww

Note the spelling used in
the instruction!

760 DarkBASIC Pro: 3D Primitives

The MAKE OBJECT TRIANGLE Statement

The simplest of all polygons, the triangle, can be constructed using the MAKE
OBJECT TRIANGLE statement. The statement requires the positions of all three
vertices to be supplied, so this statement contains a significant number of values,
as shown in FIG-31.12.

In the diagram:

objno is the integer value assigned to the triangle being
created.

x1,y1,z1 are real numbers representing the position of the
first vertex.

x2,y2,z2 are real numbers representing the position of the
second vertex.

x3,y3,z3 are real numbers representing the position of the
third vertex.

The line

MAKE OBJECT TRIANGLE 7, 2,0,3, 5,0,3, 3.5,6,7

would create the triangle shown in FIG-31.13.

FIG-31.11

How a Plane is Positioned
when First Created

FIG-31.12

The MAKE OBJECT
TRIANGLE Statement

OBJECT TRIANGLEOBJECT TRIANGLE objnoobjnoMAKEMAKE ,, x1

x2 x3

y1

y2 y3

z1

z2 z3

x1

x2 x3

y1

y2 y3

z1

z2 z3

,

,, ,

,

, , ,

,

,, ,

,

, , ,

The additional spacing
used within the
instruction is used to
highlight the various
parameter groupings.

DarkBASIC Pro: 3D Primitives 761

Notice that, unlike any of the other objects, a triangle can be placed anywhere in
3D space.

Positioning an Object
Other than the triangle, every object is created with it’s centre at the point (0,0,0).
However, once an object has been created, DarkBASIC Pro offers several ways of
moving an object to another position.

The POSITION OBJECT Statement

One way to move an object is to use the POSITION OBJECT statement. The object
is moved so that its centre is at the position specified. The statement has the format
shown in FIG-31.14.

In the diagram:

objno is the integer value previously assigned to the object.

x,y,z are real values representing the position to which the
object is to be moved. It is the centre of the object that is
placed at this position.

For example, if we wanted the centre of the cube we had created previously to be
moved to position (9,0,0), then we would use the statement:

POSITION OBJECT 1,9,0,0

The result of executing this statement is shown in FIG-31.15.

FIG-31.13

Creating a Triangle Object

(2,0,3)

(5,0,3)

(3.5,6,7)

y-axis

x-axis

z-axis

FIG-31.14

The POSITION
OBJECT Statement

OBJECTOBJECT objnoobjnoPOSITIONPOSITION x y zx y z, , ,, , ,

762 DarkBASIC Pro: 3D Primitives

LISTING-31.2 is a modification of the previous listing which moves the cube to
position (9,0,0) after the user presses a key. The new lines have been highlighted.

REM *** Set display resolution and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON

REM *** Make the cube **
MAKE OBJECT CUBE 1, 10

REM *** Move cube to (9,0,0) after key press ***
WAIT KEY
POSITION OBJECT 1,9,0,0

REM *** End program ***
WAIT KEY
END

Activity 31.4

Modify your previous program to match that given in LISTING-31.2.

Add the lines

REM *** Move the cube backwards ***

WAIT KEY

POSITION OBJECT 1, 9,0,30

so that the object is moved for a second time.

Notice that, in its final position, the cube looks smaller since it has now moved
further away from our viewing position.

LISTING-31.2

Moving the Cube

FIG-31.15

The Result of Moving the
Cube to (9,0,0)

x-axis

y-axis

z-axis

The centre of the cube
is at (9,0,0)

DarkBASIC Pro: 3D Primitives 763

Activity 31.5

Write a program (object3D02.dbpro) to create the following objects, and then
position each as specified:

Object Number Object Type Dimensions Final Position
1 CUBE 4 9,0,0
2 BOX 10,15,5 -60,0,100
3 SPHERE 7 -30,-40,50
4 CYLINDER 12 25,0,120
5 CONE 12 0,25,100

Add a WAIT KEY statement between each move.

The screen should appear as shown below.

The MOVE OBJECT Statement

The MOVE OBJECT statement can be used to move an object a specified distance
from its current location.

There are four possible directions available: RIGHT, LEFT, UP and DOWN. The
statement has the format shown in FIG-31.16.

In the diagram:

UP, DOWN, LEFT, RIGHT
One of these keywords must be used to indicate in
which direction the object is to be moved.

objno is an integer value giving the ID of the object to be
moved.

Screen at Start Screen at End

FIG-31.16

The MOVE OBJECT
Statement

UPUP

RIGHT

LEFT

DOWN

RIGHT

LEFT

DOWN{ }OBJECTOBJECT objno distobjno distMOVEMOVE ,,

764 DarkBASIC Pro: 3D Primitives

dist is a real value giving the number of units the
object is to moved.

The direction of movement for each option is shown in FIG-31.17.

Notice that there is no option to move the object backwards or forwards (i.e. along
the z-axis). For example, object 1 could be moved 10.5 units to the right using the
statement:

MOVE OBJECT RIGHT 1,10.5

Activity 31.6

Create a new program (object3D03.dbpro) containing a cube of size 10.

Use POSITION OBJECT to place the cube at (9,0,100).

Now move the cube 31.3 units to the right.

Place a WAIT KEY statement before each action.

Rotating Objects - Absolute Rotation
It is possible to rotate an object about one of its own local axes. FIG-31.18
emphasises the difference between the main (or world) axes and local axes.

Possible rotations are shown in FIG-31.19.

FIG-31.17

Using the MOVE
OBJECT Statement

MOVE OBJECT UP

MOVE OBJECT DOWN

MOVE OBJECT RIGHT

MOVE OBJECT LEFT

FIG-31.18

An Object's Local Axes

x-axis x-axis

y-axis
y-axis

z-axis z-axis

World Axes The Cube’s Local Axes

DarkBASIC Pro: 3D Primitives 765

The XROTATE OBJECT Statement

This command causes an identified object to rotate to a specific angle about the
object’s local x-axis. Rotation is towards the viewer. The statement has the format
shown in FIG-31.20.

In the diagram:

objno is the integer value specifying the object.

angle is a real number giving the angle (in degrees) to
which the object is to be rotated.

For example, an existing cube could be rotated about the x-axis to 45o using the line

XROTATE OBJECT 1, 45.0

FIG-31.21 shows the cube before and after rotation.

Activity 31.7

Write a program (object3D04.dbpro) which implements the following logic:

��� ������ ����	
���� �� �
�� �� ��
�

������ � �
�� ���
���� �� �����

���� ��� �
�� �� ���������

��� �� ��� !" � #� $%� &�

������ �
�� �� ������
�
���
�� ��� '(�'��)

*��� � +�		�������

,-&���

Run the program and check that it performs as expected.

Modify the program so that the cube revolves in the opposite direction about
the x-axis.

FIG-31.19

Possible Rotations about
Local Axes

local y-axis

local x-axis

local z-axis

Rotation about
the y-axis

Rotation about
the x-axis

Rotation about
the z-axis

FIG-31.20

The XROTATE
OBJECT Statement

FIG-31.21

The Effect of the
XROTATE OBJECT
Statement

Cube 0 rotation Cube at 45 rotationo o

OBJECTOBJECT objnoobjnoXROTATEXROTATE ,, angleangle

766 DarkBASIC Pro: 3D Primitives

The YROTATE OBJECT Statement

To rotate an object about its local y-axis we use the YROTATE OBJECT statement
which has the format shown in FIG-31.22.

In the diagram:

objno is the integer value previously assigned to the object.

angle is a real number giving the angle (in degrees) to which the
object is to be rotated.

For example, a cube (ID 1) could be rotated about its y-axis to 60o using the line:

YROTATE OBJECT 1, 60.0

FIG-31.23 shows the cube after a rotation to 60o.

The ZROTATE OBJECT Statement

To rotate an object about its z-axis, we use the ZROTATE OBJECT statement
which has the format shown in FIG-31.24.

In the diagram:

objno is the integer value previously assigned to the object.

angle is a real number giving the angle (in degrees) to which the
object is to be rotated.

For example, a cube (ID 1) could be rotated about the z-axis to 110o using the line:

ZROTATE OBJECT 1, 110.0

FIG-31.25 shows the cube after a rotation to 110o.

FIG-31.22

The YROTATE OBJECT
Statement

FIG-31.23

The Effect of the
YROTATE OBJECT
Statement

FIG-31.24

The ZROTATE OBJECT
Statement

OBJECTOBJECT objnoobjnoZROTATEZROTATE ,, angleangle

OBJECTOBJECT objnoobjnoYROTATEYROTATE ,, angleangle

FIG-31.25

The Effect of the
ZROTATE OBJECT
Statement

DarkBASIC Pro: 3D Primitives 767

The program in LISTING-31.3 revolves a cube about all three axes at the same
time.

REM ** Set display mode ***
SET DISPLAY MODE 1280,1024,32

REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1, 0, 0, 200

REM *** Rotate cube 1 degree at a time ***
REM *** around all three axes ***
FOR angle = 1 TO 360

XROTATE OBJECT 1, angle
YROTATE OBJECT 1, angle
ZROTATE OBJECT 1, angle
WAIT 10

NEXT angle

REM *** End program ***
WAIT KEY
END

Activity 31.8

Type in and test the program given above (object3D05.dbpro).

The ROTATE OBJECT Statement

Rather than use three separate statements to rotate an object about all three axes,
the same effect can be achieved using the ROTATE OBJECT statement. This
statement takes three values specifying, for each axis, the degree of rotation. The
format of the statement is shown in FIG-31.26.

In the diagram:

objno is the integer value previously assigned to the object.

xangle is a real number giving the angle (in degrees) to which the
object is to be rotated about its x-axis.

yangle is a real number giving the angle (in degrees) to which the
object is to be rotated about its y-axis.

zangle is a real number giving the angle (in degrees) to which the
object is to be rotated about its z-axis.

Activity 31.9

Rewrite the program you created in the previous Activity, replacing the
XROTATE, YROTATE and ZROTATE statements with a single ROTATE
OBJECT statement, producing the same effect as before.

All statements in the previous section rotate an object to a specific angle,

LISTING-31.3

Rotating an Object about
all Three Axes

FIG-31.26

The ROTATE
OBJECT Statement

OBJECTOBJECT objnoobjnoROTATEROTATE , , ,, , ,xangle yangle zanglexangle yangle zangle

768 DarkBASIC Pro: 3D Primitives

irrespective of that object’s current inclination. For example, if we use the
YROTATE OBJECT statement to turn a cube to 60o, the initial angle of the cube
before the statement is executed is irrelevant since the end result will be that the
cube will end up at the specified angle of 60o. This type of rotation is known as
absolute rotation.

The SET OBJECT ROTATION Statement

When an object is rotated about all three axes at the same time, the action is normally
implemented by first rotating the object about the x-axis, then the y-axis and finally
the z-axis. Of course, it's all done so quickly that the operation will appear to be
instantaneous. However, should we want to reverse the order in which the rotations
take place (i.e. z-axis first, x-axis last) then we can use the SET OBJECT
ROTATION statement. Once set, the order in which the axes are handled will
remain on this new setting unless you revert to normal using a second option of the
SET OBJECT ROTATION statement, which has the format shown in FIG-31.27.

In the diagram:

XYZ Use this option to return the order of rotations to
the default x-axis, y-axis, z-axis order.

ZYX Use this option to set the order of rotations to
the z-axis, y-axis, x-axis order.

objno is an integer value specifying the object whose
order of rotation is to be modified.

Rotating Objects - Relative Rotation
It is also possible to make an object rotate by a specific angle from its current setting.
For example, if a cube has already been rotated 45o about the local y-axis, we can
command it to be rotated by a further 60o giving a final rotation position of 105o.
This type of rotation - where the angle specified is added to the initial tilt - is known
as relative rotation.

When using relative rotation, different terms are used for rotation about each axis.
Hence, we use the term PITCH for rotation about the x-axis, TURN for rotation
about the y-axis and ROLL for rotation about the z-axis (see FIG-31.28).

FIG-31.27

The SET OBJECT
ROTATION ZYX
Statement

FIG-31.28

Relative Rotation Terms

local y-axis

local x-axis

local z-axis

TURNPITCH ROLL

UP

DOWN

RIGHT

RIGHT

LEFT

LEFT

OBJECTOBJECT objnoobjnoSET

XYZ

ZYX

ROTATIONSET

XYZ

ZYX

ROTATION { {

DarkBASIC Pro: 3D Primitives 769

The PITCH OBJECT Statement

We can tilt an object upwards (i.e. rotate it in a positive direction about the x-axis)
using the PITCH OBJECT UP statement which has the format shown in FIG-31.29.

In the diagram:

DOWN, UP Choose DOWN to make the object rotate clockwise (as
viewed from the positive side of the y-axis); choose UP to
make the object rotate anticlockwise.

objno is the integer value previously assigned to the object.

angle is a real number giving the angle (in degrees) to which the
object is to be rotated relative to its current position.
The angle can be a positive or negative value.

The program in LISTING-31.4 performs the same function as the one you created
in Activity 31.7 where you used the XROTATE statement to rotate a cube through
360o. However, this time the XROTATE statement has been replaced by a PITCH
OBJECT UP command.

REM *** Set screen resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1, 0, 0, 200

REM *** Revolve the cube ***
FOR c = 1 TO 360

PITCH OBJECT UP 1, 1.0
WAIT 10

NEXT c
REM *** End program ***
WAIT KEY
END

Activity 31.10

Type in the program given above (object3D06.dbpro) and make sure it is
equivalent to the earlier program in Activity 31.7.

Modify the program so that the cube rotates in the opposite direction.

The TURN OBJECT Statement

This statement allows relative rotation about the y-axis and has the format shown
in FIG-31.30.

FIG-31.30

The TURN OBJECT
Statement

OBJECTOBJECT objnoobjnoTURN

LEFT

TURN

LEFT

,, angleangle{ {RIGHTRIGHT

FIG-31.29

The PITCH OBJECT
Statement

OBJECTOBJECT objnoobjnoPITCH

DOWN

PITCH

DOWN

,, angleangle

UPUP{ {

LISTING-31.4

Using Relative Rotation

770 DarkBASIC Pro: 3D Primitives

In the diagram:

LEFT, RIGHT Choose RIGHT to make the object rotate to the
right about the y-axis; choose LEFT to make the
object rotate to the left.

objno is an integer value giving the ID of the object to
be rotated.

angle is a real number giving the angle (in degrees) to
which the object is to be rotated relative to its
current position. The angle can be a positive or
negative value.

Activity 31.11

Modify your previous program so that the cube rotates to the right about the
y-axis.

The ROLL OBJECT Statement

Relative rotation about the z-axis is achieved using the ROLL OBJECT statement
which has the format shown in FIG-31.31.

In the diagram:

LEFT, RIGHT Choose RIGHT to make the object rotate to the
right about the z-axis; choose LEFT to make the
object rotate to the left.

objno is an integer value giving the ID of the object to
be rotated.

angle is a real number giving the angle (in degrees) to
which the object is to be rotated relative to its
current position. The angle can be a positive or
negative value.

Activity 31.12

Modify your previous program so that the cube rotates to the left about the
z-axis.

The POINT OBJECT Statement

The main polygon of a 3D object is directed towards the player's viewpoint when
it is created. This polygon can be rotated to face any point in space using the POINT
OBJECT statement. This statement has the format shown in FIG-31.32.

FIG-31.31

The ROLL OBJECT
Statement OBJECTOBJECT objnoobjnoROLL

LEFT

ROLL

LEFT

,, angleangle{ {RIGHTRIGHT

DarkBASIC Pro: 3D Primitives 771

In the diagram:

objno is an integer value giving the ID of the object to
be affected.

x,y,z are the coordinates of the point in space at which
the main polygon of the 3D object is to face.

In the program shown in LISTING-31.5 a cube is made to face the point (45,45,0)
using the statement:

POINT OBJECT 1,45,45,0

REM *** Set display resolution and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,40
REM *** Move cube to (0,0,100) after key press ***
WAIT KEY
POSITION OBJECT 1,0,0,100
REM *** point cube at (45,45,0)***
WAIT KEY
POINT OBJECT 1,45,45,0
REM *** End program ***
WAIT KEY
END

The result is shown in FIG-31.33.

Activity 31.13

Type in and test the program given in LISTING-31.5 (object3D07.dbpro).

Modify the program to make the cube face the point (-20,17,-10).

The MOVE OBJECT distance Statement

We've already encountered a MOVE OBJECT statement which allows an object to
be moved up, down, left, or right, but a second version of MOVE OBJECT exists
which will move an object in the direction its main polygon is facing. This statement
has the format shown in FIG-31.34.

FIG-31.33

Turning an Object to Face
a Specified Point

Initially, the cube’s main polygon faces the
viewer.

After the POINT OBJECT statement is
executed, the main polygon faces (45,45,0).

FIG-31.32

The POINT OBJECT
Statement

OBJECTOBJECT objnoobjnoPOINTPOINT x y zx y z, , ,, , ,

LISTING-31.5

Using the POINT
OBJECT Statement

772 DarkBASIC Pro: 3D Primitives

In the diagram:

objno is an integer value specifying the object to be
moved.

dist is a real value specifying the distance to be
moved.

Activity 31.14

In your previous program, immediately after the POINT OBJECT statement,
add the following lines:

REM *** Move cube ***

WAIT KEY

MOVE OBJECT 1, 20

Run the updated program.

The FIX OBJECT PIVOT Statement

When an object rotates, its local axes rotate with it. In FIG-31.35 we see a cube and
its local axes before and after it has been rotated to -90o about its local z-axis.

If we now rotate the cube about its own x-axis, it will turn left-to-right rather than
up-and-over, because its x-axis has shifted position. This is demonstrated in
LISTING-31.6 where the cube is rotated a full 360o about its x-axis, rotated by -90o

about its z-axis and then rotated a full 360o about its x-axis for a second time.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position cube ***
MAKE OBJECT CUBE 1,40
POSITION OBJECT 1,0,0,100

REM *** Rotate cube 360 about x-axis ***
FOR degree = 0 TO 360

XROTATE OBJECT 1, degree
WAIT 1

NEXT degree

continued on next page

FIG-31.35

How the Local Axes are
Affected When an Object
is Rotated

FIG-31.34

The MOVE OBJECT
distance Statement

OBJECTOBJECT objno distobjno distMOVEMOVE ,,

local y-axis

local y-axis

local x-axis

local x-axis

local z-axislocal z-axis

Local Axes - Initial Position Local Axes - Cube Rotated to -90
about the z-axis

o

LISTING-31.6

Local Axes Move with
the Object

DarkBASIC Pro: 3D Primitives 773

REM *** Rotate cube to -90 about z-axis
FOR degree = 0 TO -90 STEP -1

ZROTATE OBJECT 1, degree
WAIT 10

NEXT degree

REM *** Rotate cube 360 about x-axis ***
FOR degree = 0 TO 360

XROTATE OBJECT 1, degree
WAIT 1

NEXT degree

REM *** End program ***
WAIT KEY
END

Activity 31.15

Type in and test the program given in LISTING-31.6 (object3D08.dbpro).

When an object has been rotated, it is possible to reset the local axes so that they
are parallel to the main axes. This is done using the FIX OBJECT PIVOT statement
whose format is shown in FIG-31.36.

In the diagram:

objno is an integer value specifying the object whose
local axes are to be reset.

When this statement is executed, the object in question has its local axes reset so
that the x-axis lies left-to-right, the y-axis top-to-bottom, and the z-axis in-to-out
(see FIG-31.37).

LISTING-31.6
(continued)

Local Axes Move with
the Object

FIG-31.36

The FIX OBJECT PIVOT
Statement

FIG-31.37

The Effect of Using FIX
OBJECT PIVOT

local y-axis

local y-axis

local y-axis

local y-axis

local x-axis

local x-axis

local x-axis

local x-axis

local z-axis

local z-axis

local z-axis

local z-axis

Cube’s local Axes are Reset

Cube’s local Axes are Reset

Cube rotated -90 degrees
about the z-axis

Cube rotated -45 degrees
about the z-axis

OBJECTOBJECT objnoobjnoFIX PIVOTFIX PIVOT

774 DarkBASIC Pro: 3D Primitives

Activity 31.16

In your previous program (object3D08.dbpro), add the line

FIX OBJECT PIVOT 1

before the final FOR loop structure.

How does this affect the rotation of the cube?

Modify the program again so that the cube is only rotated to -45o in the second
FOR loop.

How is the cube's rotation affected this time?

Resizing Objects
It is possible to change the size of an object after it has been created. You have the
option to resize one, two, or all three of the object’s dimensions. This allows you
to make an object uniformly larger or smaller, or to distort the original shape by
changing each dimension by differing amounts.

The SCALE OBJECT Statement

Resizing an existing 3D object is achieved using the SCALE OBJECT statement
which has the format shown in FIG-31.38.

In the diagram:

objno is the integer value previously assigned to the
3D object.

xperc is a real number giving the new size of the
object’s x dimension as a percentage of its
original size in that dimension. For example, a
value of 100.0 will retain the current size, while
200.0 would double the object’s length in the x
dimension, and 50.0 would halve it.

yperc is a real number giving the new size of the
object’s y dimension as a percentage of its
original size in that dimension.

zperc is a real number giving the new size of the
object’s z dimension as a percentage of its
original size in that dimension.

The program in LISTING-31.7 creates a sphere with a radius of 20 units. The sphere
is then resized so that the x dimension is doubled and the z dimension reduced to
10 units. The new shape is then rotated about the y-axis. The user must press ESC
to terminate the program.

FIG-31.38

The SCALE OBJECT
Statement

OBJECTOBJECT objnoobjnoSCALESCALE , , ,, , ,xperc yperc zpercxperc yperc zperc

DarkBASIC Pro: 3D Primitives 775

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Make and position the sphere **
MAKE OBJECT SPHERE 1, 20
POSITION OBJECT 1, 0,0,200

REM *** Resize sphere ***
SCALE OBJECT 1, 200.0,100.0,50.0

REM *** Rotate shape ***
DO

TURN OBJECT RIGHT 1, 1.0
LOOP

REM *** End program ***
WAIT KEY
END

Activity 31.17

Type in and test the program in LISTING-31.6 (object3D09.dbpro).

Modify the program so that a cone is used in place of the sphere.

Showing and Hiding Objects
Any 3D object is immediately visible from the moment it is created (assuming it’s
within view), but it is possible to hide an object using the HIDE OBJECT statement,
making it reappear later using the SHOW OBJECT command.

The HIDE OBJECT Statement

An object can be made invisible using the HIDE OBJECT statement which has the
format shown in FIG-31.39.

In the diagram:

objno is the integer value previously assigned to the
3D object which is to be hidden.

The SHOW OBJECT Statement

An object which has been previously hidden can be made to reappear using the
SHOW OBJECT statement which has the format shown in FIG-31.40.

In the diagram:

objno is the integer value previously assigned to the
hidden 3D object which is to reappear.

FIG-31.40

The SHOW OBJECT
Statement

FIG-31.39

The HIDE OBJECT
Statement

OBJECTOBJECT objnoobjnoHIDEHIDE

OBJECTOBJECT objnoobjnoSHOWSHOW

LISTING-31.7

Resizing an Object

776 DarkBASIC Pro: 3D Primitives

The program in LISTING-31.8 rotates a cube continually, hiding the cube when ‘h’
is pressed and showing it again when ‘s’ is pressed.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 20
POSITION OBJECT 1, 0,0,200

REM *** Rotate object ***
DO

PITCH OBJECT UP 1, 1.0
REM *** Read key ***
ch$ = INKEY$()
REM *** IF its s - show cube ***
IF ch$ = “s”

SHOW OBJECT 1
ENDIF
REM *** IF its h - hide cube ***
IF ch$ = “h”

HIDE OBJECT 1
ENDIF

LOOP
REM *** End program ***
END

Activity 31.18

Type in and test the program given above (object3D10.dbpro).

The DELETE OBJECT Statement

When a 3D object is no longer required, its RAM space can be released using the
DELETE OBJECT statement which has the format shown in FIG-31.41.

In the diagram:

objno is an integer value specifying the ID of the 3D
object to be deleted.

The DELETE OBJECTS Statement

If we need to delete several objects at one time, then the most efficient way to do
this is to use the DELETE OBJECTS statement which has the format shown in
FIG-31.42.

In the diagram:

objno1 is an integer value specifying the lowest ID of the
3D objects to be deleted.

objno2 is an integer value specifying the highest ID of the
3D objects to be deleted.

FIG-31.41

The DELETE OBJECT
Statement

OBJECTOBJECT objnoobjnoDELETEDELETE

LISTING-31.8

Hiding and Showing
Objects

FIG-31.42

The DELETE
OBJECTS Statement

OBJECTSOBJECTS objno1 objno2objno1 objno2DELETEDELETE ,,

DarkBASIC Pro: 3D Primitives 777

For example, if we needed to delete 10 3D objects with ID values ranging from 8
to 17, then we would use the statement:

DELETE OBJECTS 8,17

Copying a 3D Object
We can create a copy of an existing 3D object in one of two ways, as described
below.

The CLONE OBJECT Statement

The CLONE OBJECT statement creates an independent copy of an existing 3D
object. The statement has the format shown in FIG-31.43.

In the diagram:

objno1 is an integer value specifying the ID to be
assigned to the object being created.

objno2 is an integer value specifying the ID of the
existing object to be copied.

The program in LISTING-31.9 uses the CLONE OBJECT statement to create a
duplicate cube.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position cube ***
MAKE OBJECT CUBE 1,40
POSITION OBJECT 1,-40,0,100
REM *** Rotate cube ***
WAIT KEY
XROTATE OBJECT 1 , -45
REM *** Copy cube ***
WAIT KEY
CLONE OBJECT 2,1
REM *** Position copy ***
POSITION OBJECT 2, 40,0,50
REM *** Delete original cube ***
WAIT KEY
DELETE OBJECT 1
REM *** End program ***
WAIT KEY
END

Activity 31.19

Type in and test the program given in LISTING-31.9 (object3D11.dbpro).

Is the copied cube rotated to the same angle as the original?

Is the copied cube deleted when the original cube is removed?

LISTING-31.9

Creating a Copy of a
3D Object

FIG-31.43

The CLONE OBJECT
Statement

OBJECTOBJECT objno1 objno2objno1 objno2CLONECLONE ,,

778 DarkBASIC Pro: 3D Primitives

The INSTANCE OBJECT Statement

A second way to duplicate an existing object is to use the INSTANCE OBJECT
statement. This statement has the format shown in FIG-31.44.

In the diagram:

objno1 is an integer value specifying the ID to be
assigned to the object being created.

objno2 is an integer value specifying the ID of the
existing object to be copied.

Although this may seem to have the same affect as the CLONE OBJECT statement,
in fact the two statements differ in how data about the copied object is held. When
CLONE OBJECT is used, the new object has its own independent data area; with
INSTANCE OBJECT the two objects share parts of the same data area. The
consequence of this is that objects created using INSTANCE OBJECT will
disappear if the original object from which they were created is deleted.

Activity 31.20

Modify your last program, replacing the CLONE OBJECT statement with a
INSTANCE OBJECT statement.

How does this change affect the operation of the program?

Change the DELETE OBJECT statement so that object 2, rather than object 1,
is deleted. How does this affect the program?

Retrieving Data on 3D Objects

The OBJECT EXIST Statement

We can check that an object of a specified ID actually exists using the OBJECT
EXIST statement which has the format shown in FIG-31.45.

In the diagram:

objno is an integer specifying the ID of the object to be
checked.

If the object exists, 1 is returned, otherwise zero is returned.

FIG-31.45

The OBJECT EXIST
Statement

EXISTEXIST ()()

integer

OBJECTOBJECT objnoobjno

FIG-31.44

The INSTANCE
OBJECT Statement

OBJECTOBJECT objno1 objno2objno1 objno2INSTANCEINSTANCE ,,

DarkBASIC Pro: 3D Primitives 779

The OBJECT POSITION Statement

The exact position of a 3D object's centre can be determined using the OBJECT
POSITION statement. Three variations of the statement exist, with each variation
returning one of the object's ordinates. The statement has the format shown in
FIG-31.46.

In the diagram:

X,Y,Z One of these options should be chosen. Choose X
if the x-ordinate of the specified object is required,
Y for the y-ordinate, and Z for the z-ordinate.

objno is an integer value specifying the object whose
ordinate is to be returned.

For example, we could determine the position in space of object 1's centre using the
lines:

x = OBJECT POSITION X(1)
y = OBJECT POSITION Y(1)
z = OBJECT POSITION Z(1)
PRINT "Object 1 has its centre at (",x,",",y,",",z,")"

The OBJECT VISIBLE Statement

The OBJECT VISIBLE statement returns 1 if a specified 3D object is currently,
visible; if the object is hidden, the value zero is returned. The statement has the
format shown in FIG-31.47.

In the diagram:

objno is an integer value specifying the ID of the
object to be checked.

If the object is currently showing, 1 is returned, otherwise zero is returned.

FIG-31.47

The OBJECT VISIBLE
Statement

VISIBLEVISIBLE ()()

integer

OBJECTOBJECT objnoobjno

FIG-31.46

The OBJECT POSITION
Statement

()()

real

X

Y

Z

X

Y

Z

POSITIONPOSITIONOBJECTOBJECT objnoobjno{

780 DarkBASIC Pro: 3D Primitives

The OBJECT SIZE Statement

The dimensions of a specified object can be determined using the OBJECT SIZE
statement. Like OBJECT POSITION, there are three variations available in this
statement, each returning one dimension of the object in question. The format for
this statement is given in FIG-31.48.

In the diagram:

X,Y,Z One of these options should be chosen. Choose X
if the width of the specified object is required,
Y for the height, and Z for the depth.

All three options can be omitted and the
statement will return an overall value for the size
of the 3D object.

objno is an integer value specifying the object whose
dimension is to be returned.

The value returned by the statement is real and, because of rounding errors, this
may be slightly out. For example, if we create a cube (object 1) 40 units in all
directions, then the statement

PRINT "Width ", OBJECT SIZE X(1)

will display the value 39.9999961853.

Also, the OBJECT SIZE (1) statement - with no reference to any specific dimension
- gives an overall size based on all three dimensions.

Activity 31.21

Write a program (object3D12.dbpro) which creates a box of random size
(using limits 5 to 50) and then displays the box's width, height and depth.

The OBJECT ANGLE Statement

The angle to which an object has been rotated about any of its local axes can be
determined using the OBJECT ANGLE statement which has the format shown in
FIG-31.49.

FIG-31.48

The OBJECT SIZE
Statement

()()

real

X

Y

Z

X

Y

Z

SIZESIZEOBJECTOBJECT objnoobjno{

DarkBASIC Pro: 3D Primitives 781

In the diagram:

X,Y,Z One of these options should be chosen. Choose X
if the rotation about the local x axis is required,
Y for rotation about the y-axis, and Z for the
rotation about the z-axis.

objno is an integer value specifying the object whose
rotation angle is to be returned.

Activity 31.22

Modify your previous program so that the box object is rotated by a random
number of degrees about all three axes. Display the amount of rotation in each
case.

Controlling an Object's Rotation Using the Mouse
In the example that follows, we're going to make a cube face towards the mouse
pointer. As the user moves the mouse pointer about the screen, so the cube will
continually re-orientate itself to face the pointer.

Before looking at the code, we have one main obstacle to overcome. The mouse
pointer commands (MOUSE X() and MOUSE Y()) use a 2D coordinate system
with the origin at the top left corner of the screen; 3D objects use a coordinate system
in which the origin is (initially, at least) at the centre of the screen. To convert the
mouse's x ordinate readings to 3D space we need to use the line:

x3D = MOUSE X() - SCREEN WIDTH()/2

The y ordinate also needs to have it's sign changed, since for the mouse the positive
section of the y-axis is down, while in 3D space the positive section of the y-axis
is up! We can solve this with the line:

y3D = -(MOUSE Y() - SCREEN HEIGHT()/2)

Of course, there is no third dimension as far as the mouse pointer is concerned, so
we'll keep that set to zero.

We're now ready to describe the logic required by the program:

������ �
��
���� �
�� ���./���� �� ���
�� ��� �00����� ����
&�

FIG-31.49

The OBJECT ANGLE
Statement

()()

real

X

Y

Z

X

Y

Z

ANGLEANGLEOBJECTOBJECT objnoobjno

782 DarkBASIC Pro: 3D Primitives

1�� +�
�� ����������� ��� ������� �� $& �0���
��.� �
�� 0���� �� ����� �����������

2��3

The code for the program is given in LISTING-31.10.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,0,0,100
DO

REM *** Convert mouse 2D coords to 3D ***
x3D = MOUSEX() - SCREEN WIDTH()/2
y3D = -(MOUSEY() - SCREEN HEIGHT()/2)
REM *** Re-orient cube ***
POINT OBJECT 1,x3D,y3D,0

LOOP
REM *** End program ***
END

Activity 31.23

Type in and test the code given above (object3D13.dbpro).

Modify the program to use two spheres, set side-by-side, both of which should
face towards the mouse pointer.

Wireframe and Culling

The SET OBJECT WIREFRAME Statement

It is possible to show a 3D object in wireframe mode (which show only the edges
of the polygons that make up a shape) using the SET OBJECT WIREFRAME
statement which has the format shown in FIG-31.50.

In the diagram:

objno is an integer value identifying the object which
is to have its display mode altered.

mode is 0 or 1.
0 - solid mode
1 - wireframe mode

LISTING-31.11 demonstrates the use of this statement, switching between solid
and wireframe mode every time a key is pressed.

REM *** Set screen mode ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100
REM *** Start in solid mode ***

wire = 0 continued on next page

FIG-31.50

The SET OBJECT
WIREFRAME Statement

OBJECTOBJECT WIREFRAMEWIREFRAMESETSET objnoobjno ,, modemode

LISTING-31.11

Switching Between
Normal and Wireframe
Mode

LISTING-31.10

Making a 3D Object Face
the Mouse Pointer

DarkBASIC Pro: 3D Primitives 783

REM *** Rotate cube ***
DO

REM *** IF key pressed, switch mode ***
IF INKEY$() <> ""

wire = 1 - wire
SET OBJECT WIREFRAME 1, wire

ENDIF
PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP
REM *** End program ***
END

Activity 31.24

Type in and test the program in LISTING-31.11 (object3D14.dbpro).

The SET OBJECT CULL Statement

Under normal circumstances, it is impossible to see every part of a 3D object at the
same time. The polygons that make up the hidden parts of an object are not drawn
by the computer. Obviously, this saves processing time and creates a more realistic
effect. If we take a second look at the previous program when running in wireframe
mode, we'll see that the polygons at the back of the cube are not drawn. This
elimination of hidden polygons is known as culling. Culling can be toggled on or
off using the SET OBJECT CULL statement which has the format shown in
FIG-31.51.

In the diagram:

objno is an integer value identifying the object which
is to have its cull mode altered.

mode is 0 or 1.
0 - culling off
1 - culling on

Activity 31.25

Modify your last program by adding the line

SET OBJECT CULL 1,0

immediately before the DO..LOOP structure. Notice that the hidden polygons
are now being drawn.

Modify the program again so that pressing the w key toggles between
wireframe and solid mode and that pressing c toggles between culling on and
culling off.

There's a slight problem when it comes to displaying cylinders and cones, as we
can see from the output produced by LISTING-31.12.

LISTING-31.11
(continued)

Switching Between
Normal and Wireframe
Mode

FIG-31.51

The SET OBJECT
CULL Statement

OBJECTOBJECT CULLCULLSETSET objnoobjno ,, modemode

784 DarkBASIC Pro: 3D Primitives

REM *** Set screen mode ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position cone and cylinder ***
MAKE OBJECT CONE 1, 5
POSITION OBJECT 1,-6,-5,0
XROTATE OBJECT 1, 45
MAKE OBJECT CYLINDER 2,5
POSITION OBJECT 2, 6,-5,0
REM *** End program ***
WAIT KEY
END

Activity 31.26

Type in and test the program in LISTING-31.12 (object3D15.dbpro).

What problem occurs with both shapes?

The inside surfaces of both shapes have not been drawn (see FIG-31.52).

But we can solve this problem by switching off culling, so that the hidden polygons
are drawn.

Activity 31.27

Modify your previous program so that culling is switched off for both the cone
and the cylinder.

Storage Methods
When a 3D object is shown on screen, the coordinates of its vertices are stored in
memory in an area known as a vertex buffer. Normally, each object will have its
own vertex buffer. However, some video cards allow different objects to share
vertex buffers, other video cards don't. As a default, 3D objects in DARKBASIC
Pro do not share vertex buffers - this ensures compatibility with the maximum
number of video cards. However, it is possible to force vertex buffer sharing and,
if your video card can handle this, improve the performance of your program.

The SET GLOBAL OBJECT CREATION Statement

To force vertex buffer sharing, we use the SET GLOBAL OBJECT CREATION
statement which has the format shown in FIG-31.53.

FIG-31.52

Hidden Surfaces on
Cones and Cylinders

The inside surfaces
of both shapes are not

drawn

LISTING-31.12

A Problem with Cones
and Cylinders

DarkBASIC Pro: 3D Primitives 785

In the diagram:

mode 0 or 1. 0 - no vertex buffer sharing (this is the
default setting); 1 - vertex buffer sharing allowed.

Even if your own video card does allow vertex buffer sharing, your customer's may
not, so it's probably best to ignore this option.

Summary
� A point in 3D space is specified using x, y, and z coordinates.

� There are three main planes in 3D space - XY, YZ, and XZ.

� The computer screen uses a positive-up, negative-down y-axis when operating
in 3D mode. This is the opposite from the 2D settings.

� The positive z-axis travels away from the viewer "into" the screen.

� A point in space is known as a vertex.

� A set of vertices, when joined, form a polygon.

� The join between two vertices is known as an edge.

� Basic 3D shapes are known as primitives.

� When first created a 3D object has it centre position at the origin.

� The x and y axes intersect at the centre of the screen at start-up.

� Use the MAKE OBJECT CUBE to create a cube.

� Use MAKE OBJECT BOX to create a cuboid.

� Use MAKE OBJECT SPHERE to create a sphere.

� The number of polygons used can be specified when creating a sphere.

� Use MAKE OBJECT CYLINDER to create a cylinder.

� Use MAKE OBJECT CONE to create a cone.

� Use MAKE OBJECT PLAIN to create a plane.

� A plane is initially oriented as an XY plane.

� Use MAKE OBJECT TRIANGLE to create a triangle.

� The initial position of a triangle is determined by the vertices given.

� Use POSITION OBJECT to place the centre of an object at a new location.

FIG-31.53

The SET GLOBAL
OBJECT CREATION
Statement

OBJECT CREATIONOBJECT CREATION modemodeGLOBALSET GLOBALSET

786 DarkBASIC Pro: 3D Primitives

� Use MOVE OBJECT to move an object along the x or y axis.

� Every 3D object has its own local axes with the origin at the centre of the object.

� Use the XROTATE, YROTATE or ZROTATE OBJECT statements to rotate an
object to a specific angle about one of its local axes.

� Use ROTATE OBJECT to rotate an object to specific angles about all three local
axes at the same time.

� Use PITCH, TURN or ROLL OBJECT statements to rotate an object by a
number of degrees around a given axis.

� Use POINT OBJECT to make an object face towards a specified point.

� Use MOVE OBJECT distance to move the object a specified number of units
in the direction in which an object is pointing.

� Use FIX OBJECT PIVOT to reset an object's local axes to be in line with the
global axes.

� Use SCALE OBJECT to change the dimensions of an object.

� Use HIDE OBJECT to make an object invisible.

� Use SHOW OBJECT to make an invisible object reappear.

� Use DELETE OBJECT to erase an object from RAM.

� Use DELETE OBJECTS to erase a group og objects from RAM.

� Use CLONE OBJECT to make an independent copy of an existing object.

� Use INSTANCE OBJECT to create a dependent copy of an existing object.

� Use OBJECT EXIST to check if a specified object exists.

� Use OBJECT VISIBLE to check if a specified object is visible.

� Use OBJECT POSITION to determine the position in space of an object's centre.

� Use OBJECT SIZE to determine the dimensions of a specified object.

� Use OBJECT ANGLE to determine the current angle of rotation a specified
object has about its local axes.

� Use SET OBJECT WIREFRAME to display a 3D object in wireframe or normal
mode.

� Use SET OBJECT CULL to toggle culling for a specified 3D object.

� Use SET GLOBAL OBJECT CREATION to enable/disable vertex buffer
sharing.

DarkBASIC Pro: 3D Primitives 787

Merging Primitives

Introduction
DarkBASIC Pro version 1.058 introduced statements which allow us to create new
shapes by merging two primitives. There are three basic options available:

Create the new shape from the combination of the two original shapes - known as
union (see FIG-31.54).

Create the new shape by removing the overlapping section of shape 2 from shape
1 - known as difference (see FIG-31.55).

Create the new shape from the overlapping area between shape 1 and shape 2 -
known as intersection (see FIG-56).

The Statements
When we join two shapes using the merge statements, the resulting shape is stored
in a format knows as Constructive Solid Geometry (CSG). We need not concern
ourselves with the details of this format, and it is only mentioned here so that you
know the meaning of the initials used in the statements.

The PERFORM CSG UNION Statement

We can create a new shape from the union of two existing shapes using the
PERFORM CSG UNION statement which has the format shown in FIG-31.57.

FIG-31.54

Shape Union

Shape 1 Shape 2 Resulting Shape

union

FIG-31.55

Shape Difference

Shape 1 Shape 2 Resulting Shape

difference

FIG-31.56

Shape Intersection

Shape 1 Shape 2 Resulting Shape

intersection

788 DarkBASIC Pro: 3D Primitives

In the diagram:

objno1 is an integer value specifying the ID of the first
3D object to be used in the union.

objno2 is an integer value specifying the ID of the second
3D object to be used in the union.

The statement modifies the shape of objno1 without affecting objno2. Normally,
the programmer would delete the second object once the union is completed.

The program in LISTING-31.13 demonstrates the union of a cube and a box. After
the box has been deleted, the resulting shape is then rotated about its local x and y
axes.

REM *** Set screen resolution and background ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON

REM *** Position camera ***
AUTOCAM OFF
POSITION CAMERA 0,0,-100

REM *** Create two shapes used ***
MAKE OBJECT CUBE 1,40
MAKE OBJECT BOX 2,10,30,10
POSITION OBJECT 2,0,15,0

REM *** Let viewer see position of shapes ***
WAIT KEY

REM *** Union shapes ***
PERFORM CSG UNION 1,2

REM *** Remove object 2 ***
DELETE OBJECT 2

REM *** Rotate new shape ***
DO

TURN OBJECT LEFT 1,1.0
PITCH OBJECT UP 1,1.0

LOOP

REM *** End program ***
END

Activity 31.28

Type in and test the program given in LISTING-31.13 (object3D16.dbpro).

Try changing the second object to a sphere of diameter 10 and change the
POSITION OBJECT statement to read

POSITION OBJECT 2, 0, 25, 0

FIG-31.57

The PERFORM CSG
UNION Statement

PERFORMPERFORM UNIONUNIONCSGCSG objno1 objno2objno1 objno2,,

LISTING-31.13

Creating a New 3D Shape
using Union

This program positions
the camera which is
responsible for the picture
we see on the screen.
Full details of camera
usage are covered in
Chapter 33.

DarkBASIC Pro: 3D Primitives 789

As you've just discovered, the UNION statement only works predictably with cubes
and boxes. Other shapes give unpredictable results (although the cone is close).

The PERFORM CSG DIFFERENCE Statement

The PERFORM CSG DIFFERENCE statement removes from object 1 the volume
it shares in common with object 2. The statement has the format shown in
FIG-31.58.

In the diagram:

objno1 is an integer value specifying the ID of the first
3D object to be used in the difference operation.

objno2 is an integer value specifying the ID of the second
3D object to be used in the difference operation.

As before, the second object is unaffected by the operation and would normally be
deleted. Also, we are again restricted to cubes and boxes if we are to obtain
consistent results.

Activity 31.29

Restore your last project to its original code (as shown in LISTING-31.13).

Change the union operation to a difference operation and observe the new
shape created.

Modify the width and depth of the box to be 35.

The PERFORM CSG INTERSECTION Statement

The PERFORM CSG INTERSECTION statement does not perform intersection as
defined at the beginning of this chapter, but it does create a different shape from
that produced by the PERFORM CSG DIFFERENCE statement and so is worth
looking at. The statement has the format shown in FIG-31.59.

In the diagram:

objno1 is an integer value specifying the ID of the first
3D object to be used in the intersection operation.

objno2 is an integer value specifying the ID of the second
3D object to be used in the intersection operation.

Again, the second object would normally be deleted and we are restricted to cubes
and boxes if we are to obtain predictable results.

FIG-31.58

The PERFORM CSG
DIFFERENCE Statement

PERFORMPERFORM DIFFERENCEDIFFERENCECSGCSG objno1 objno2objno1 objno2,,

FIG-31.59

The PERFORM CSG
INTERSECTION
Statement

PERFORMPERFORM INTERSECTIONINTERSECTIONCSGCSG objno1 objno2objno1 objno2,,

790 DarkBASIC Pro: 3D Primitives

Activity 31.30

Modify your previous program and determine how the shape created by the
PERFORM CSG INTERSECTION differs from that produced by PERFORM
CSG DIFFERENCE.

Summary
� Cubes and boxes can be merged to create new shapes.

� Use PERFORM CSG UNION to modify a shape so that it becomes the
amalgamation of the original two shapes.

� Use PERFORM CSG DIFFERENCE to modify a shape so that the volume it
shares with a second shape is removed.

� Use PERFORM CSG INTERSECTION to modify a shape to remove polygons
which touch the second shape.

DarkBASIC Pro: 3D Primitives 791

Solutions
Activity 31.1

No solution required.

Activity 31.2
1.
REM *** Set display and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the sphere ***
MAKE OBJECT SPHERE 1,10
REM *** End program ***
WAIT KEY
END

2.
REM *** Set display and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the sphere ***
MAKE OBJECT SPHERE 1,10,40,40
REM *** End program ***
WAIT KEY
END

Activity 31.3
1.
REM *** Set display and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the cylinder ***
MAKE OBJECT CYLINDER 1,5
REM *** End program ***
WAIT KEY
END

2.
REM *** Set display and backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the cone ***
MAKE OBJECT CONE 1,5
REM *** End program ***
WAIT KEY
END

Activity 31.4
REM *** Set display & backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the cube ***
MAKE OBJECT CUBE 1, 10
REM *** Cube to (50,0,0) after key
press ***
WAIT KEY
POSITION OBJECT 1,9,0,0
REM *** Move the cube backwards ***
WAIT KEY
POSITION OBJECT 1, 9,0,30
REM *** End program ***
WAIT KEY
END

Activity 31.5
REM *** Set display & backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,4
MAKE OBJECT BOX 2,10,15,5
MAKE OBJECT SPHERE 3,7
MAKE OBJECT CYLINDER 4,12
MAKE OBJECT CONE 5,12
REM *** Cube to (9,0,0) after key
press ***
WAIT KEY
POSITION OBJECT 1,9,0,0
REM *** Box to (-60,0,100) ***
WAIT KEY
POSITION OBJECT 2,-60,0,100
REM *** Sphere to (-30,-40,50) ***
WAIT KEY
POSITION OBJECT 3,-30,-40,50
REM *** Cylinder to (25,0,120) ***
WAIT KEY
POSITION OBJECT 4,25,0,120
REM *** Cone to (0,25,100) ***
WAIT KEY
POSITION OBJECT 5,0,25,100
REM *** End program ***
WAIT KEY
END

Activity 31.6
REM *** Set display & backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,10
REM *** Cube to(9,0,100) after key
press ***
WAIT KEY
POSITION OBJECT 1,9,0,100
REM *** Cube 31.3 units to the right

WAIT KEY
MOVE OBJECT RIGHT 1, 31.3
REM *** End program ***
WAIT KEY
END

Activity 31.7

Version 1
REM *** Set display & backdrop
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,40
REM ***Cube to(0,0,100) after key
press ***
POSITION OBJECT 1,0,0,100
REM *** Rotate cube ***
FOR degree = 1 TO 360

XROTATE OBJECT 1, degree
WAIT 1

NEXT degree
REM *** End program ***
WAIT KEY
END

792 DarkBASIC Pro: 3D Primitives

Version 2
REM *** Set display & backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,40
REM ***Cube to(0,0,100) after key press ***
POSITION OBJECT 1,0,0,100
REM *** Rotate cube ***
FOR degree = 359 TO 0 STEP -1

XROTATE OBJECT 1, degree
WAIT 1

NEXT degree
REM *** End program ***
WAIT KEY
END

Activity 31.8

No solution required.

Activity 31.9
REM ** Set display mode ***
SET DISPLAY MODE 1280,1024,32
REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1, 0, 0, 200
REM *** Rotate cube 1 degree at a time ***
REM *** around all three axes ***
FOR angle = 1 TO 360

ROTATE OBJECT 1, angle,angle,angle
WAIT 10

NEXT angle
REM *** End program ***
WAIT KEY
END

Activity 31.10
REM *** Set screen resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1, 0, 0, 200
REM *** Revolve the cube ***
FOR c = 1 TO 360

PITCH OBJECT UP 1, -1.0
WAIT 10

NEXT c
REM *** End program ***
WAIT KEY
END

Activity 31.11
REM *** Set screen resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1, 0, 0, 200
REM *** Revolve the cube ***
FOR c = 1 TO 360

TURN OBJECT RIGHT 1, 1.0
WAIT 10

NEXT c
REM *** End program ***
WAIT KEY
END

Activity 31.12

REM *** Set screen resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1, 0, 0, 200
REM *** Revolve the cube ***
FOR c = 1 TO 360

ROLL OBJECT LEFT 1, 1.0
WAIT 10

NEXT c
REM *** End program ***
WAIT KEY
END

Activity 31.13
REM *** Set display & backdrop ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,40
REM ***Cube to(0,0,100) after key press ***
WAIT KEY
POSITION OBJECT 1,0,0,100
REM *** point cube at (-20,17,-10)***
WAIT KEY
POINT OBJECT 1,-20,17,-10
REM *** End program ***
WAIT KEY
END

Activity 31.14

The changes should cause the cube should move in the
direction it is pointing.

Activity 31.15

No solution required.

Activity 31.16

The cube rotates in the same direction on both occasions.

Activity 31.17
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position the cone ***
MAKE OBJECT CONE 1, 20
POSITION OBJECT 1, 0,0,200
REM *** Resize cone ***
SCALE OBJECT 1, 200.0,100.0,50.0
REM *** Rotate shape ***
DO

TURN OBJECT RIGHT 1, 1.0
LOOP
REM *** End program ***
END

Activity 31.18

No solution required.

Activity 31.19

The second cube is created with the same rotation.
The copied cube does not disappear when the original is
deleted.

DarkBASIC Pro: 3D Primitives 793

Activity 31.20

The duplicated cube is not rotated, but it is removed when
the original cube is deleted.

When the second cube is deleted, the first cube is
unaffected.

Activity 31.21
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Seed random number generator ***
RANDOMIZE TIMER()
REM *** Make and position the box ***
MAKE OBJECT BOX 1, RND(45)+5,RND(45)+5,
�RND(45)+5
POSITION OBJECT 1, 0,0,0
REM *** Get dimensions of box ***
width# = OBJECT SIZE X(1)
height# = OBJECT SIZE Y(1)
depth# = OBJECT SIZE Z(1)
REM *** Display dimensions ***
DO

SET CURSOR 10,20
PRINT "Width : ",width#, " Height :",
�height#, " Depth : ",depth#

LOOP
REM *** End program ***
WAIT KEY
END

Activity 31.22
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Seed random number generator ***
RANDOMIZE TIMER()
REM *** Make and position the box ***
MAKE OBJECT BOX 1, RND(45)+5,RND(45)+5,
ÄRND(45)+5
POSITION OBJECT 1, 0,0,0
REM *** Rotate box at random ***
ROTATE OBJECT 1,RND(359),RND(359),RND(359)
REM *** Get dimensions of box ***
width# = OBJECT SIZE X(1)
height# = OBJECT SIZE Y(1)
depth# = OBJECT SIZE Z(1)
REM *** Get rotations of box ***
x_axis_rotation = OBJECT ANGLE X(1)
y_axis_rotation = OBJECT ANGLE Y(1)
z_axis_rotation = OBJECT ANGLE Z(1)
REM *** Display details ***
DO

SET CURSOR 10,20
PRINT "Width : ",width#, " Height : "
�, height#, " Depth : ",depth#
SET CURSOR 10,40
PRINT "X-axis : ",x_axis_rotation,
�" y-axis : ",y_axis_rotation,
�" z-axis : ", z_axis_rotation

LOOP
REM *** End program ***
WAIT KEY
END

Activity 31.23
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position spheres ***
MAKE OBJECT SPHERE 1, 40
POSITION OBJECT 1,25,0,100
MAKE OBJECT SPHERE 2, 40

POSITION OBJECT 2, -25,0,100
DO

x3D = MOUSEX() - SCREEN WIDTH()/2
y3D = -(MOUSEY() - SCREEN HEIGHT()/2)
POINT OBJECT 1, x3D,y3D,0
POINT OBJECT 2, x3D,y3D,0

LOOP
REM *** End program ***
END

Activity 31.24

No solution required.

Activity 31.25
REM *** Set screen mode ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100
REM *** Start in solid and culling on ***
wire = 0
cull = 1
REM *** Rotate cube ***
DO

REM *** IF key pressed, switch mode ***
IF INKEY$() ="w"

wire = 1 - wire
SET OBJECT WIREFRAME 1, wire

ENDIF
IF INKEY$()="c"

cull = 1 - cull
SET OBJECT CULL 1,cull

ENDIF
PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP
REM *** End program ***
END

Activity 31.26

The inside surfaces of both shapes are not drawn.

Activity 31.27
REM *** Set screen mode ***
SET DISPLAY MODE 1280,1024,32

REM *** Make & position cone and cylinder ***
MAKE OBJECT CONE 1, 5
POSITION OBJECT 1,-6,-5,0
XROTATE OBJECT 1, 45
MAKE OBJECT CYLINDER 2,5
POSITION OBJECT 2, 6,-5,0

REM ** Culling off for both objects ***
SET OBJECT CULL 1,0
SET OBJECT CULL 2,0

REM *** End program ***
WAIT KEY
END

Activity 31.28

In fact, the UNION operation only works predictably with
cubes and boxes.

794 DarkBASIC Pro: 3D Primitives

Activity 31.29
REM *** Set screen resolution and background ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Position camera ***
AUTOCAM OFF
POSITION CAMERA 0,0,-100
REM *** Create two shapes used ***
MAKE OBJECT CUBE 1,40
MAKE OBJECT BOX 2,10,30,10
POSITION OBJECT 2,0,15,0
REM *** Let viewer see position of shapes ***
WAIT KEY
REM *** Difference shapes ***
PERFORM CSG DIFFERENCE 1,2
REM *** Remove object 2 ***
DELETE OBJECT 2
REM *** Rotate new shape ***
DO

TURN OBJECT LEFT 1,1.0
PITCH OBJECT UP 1,1.0

LOOP
REM *** End program ***
END

Activity 31.30
REM *** Set screen resolution and background ***
SET DISPLAY MODE 1280,1024,32
COLOR BACKDROP 0
BACKDROP ON
REM *** Position camera ***
AUTOCAM OFF
POSITION CAMERA 0,0,-100
REM *** Create two shapes used ***
MAKE OBJECT CUBE 1,40
MAKE OBJECT BOX 2,10,30,10
POSITION OBJECT 2,0,15,0
REM *** Let viewer see position of shapes ***
WAIT KEY
REM *** Intersection shapes ***
PERFORM CSG INTERSETION 1,2
REM *** Remove object 2 ***
DELETE OBJECT 2
REM *** Rotate new shape ***
DO

TURN OBJECT LEFT 1,1.0
PITCH OBJECT UP 1,1.0

LOOP
REM *** End program ***
END

DarkBASIC Pro: 3D Primitives 795

796 DarkBASIC Pro: 3D Primitives

32

Applying a Texture Image to a 3D Object

Colouring a 3D Object

Loading a Texture Image

Mipmaps

Offsetting a Texture

Overlaying Textures

Seamless Tiling

Semi-Transparent 3D Object

Sky Spheres

Texture Mapping Options

Texture Transparency

Tiling

Video Texturing

DarkBASIC Pro: Texturing 797

Adding Texture

Introduction
The 3D shapes we have created so far look rather bland in white and shades of grey.
To make things more interesting we can wrap an image around a 3D shape and
thereby enhance its visual impact.

This is known as adding texture to the 3D object. An example of a textured cube
is shown in FIG-32.1.

Loading a Texture Image
We need to start by loading the picture we intend to use to texture the 3D object
into an image object with a statement such as:

LOAD IMAGE "texture01.bmp",1

After this has been done, we can transfer the image to the surface of one or more
3D objects.

Using the Image as a Texture

The TEXTURE OBJECT Statement

A loaded image can become the texture of a 3D object by executing the TEXTURE
OBJECT statement which has the format shown in FIG-32.2.

In the diagram:

objno is an integer value specifying the object to which
the texture is to be applied.

imgno is an integer value specifying the image to be
used as the texture.

FIG-32.2

The TEXTURE
OBJECT Statement

OBJECTOBJECT objnoobjnoTEXTURETEXTURE imgnoimgno,,

FIG-32.1

A Textured Cube

798 DarkBASIC Pro: Texturing

For example, we could apply image 1 to object 2 using the line

TEXTURE OBJECT 2,1

The program in LISTING-32.1 demonstrates how a cube can be textured with a
wood image to create the impression of a wooden crate.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load texture image ***
LOAD IMAGE "textureWood.jpg",1

REM *** Create cube ***
MAKE OBJECT CUBE 1,40

REM *** Add texture to cube ***
TEXTURE OBJECT 1,1

REM *** Position cube ***
POSITION OBJECT 1,25,0,100

REM *** Rotate cube continuously ***
DO

TURN OBJECT LEFT 1, 1.0
LOOP

REM *** End program ***
END

Activity 32.1

Type in and test the program in LISTING-32.1 (texture01.dbpro).

Change the texture image to eyecol.bmp.

We can see quite clearly from the results of the last Activity that the image is applied
separately to each face of the cube. For other shapes, the image may be applied
differently.

Activity 32.2

Modify your last program so that eyecol.bmp is applied as a texture to a box,
cylinder, cone and sphere (any dimensions will do). Create a separate program
for each shape.

How often is the image repeated on each of the shapes?

Mipmaps
Texturing a 3D object can be quite time consuming. It may be easy enough to map
a 300 by 300 pixel image onto a flat surface which occupies exactly 300 by 300
pixels on the screen, but if the 3D object moves off into the distance, the computer
has to work much harder to map the same 300 by 300 image onto an object which
now occupies just 23 by 23 pixels on the screen.

To help with this problem DarkBASIC Pro creates more than one copy of any image
that is loaded, with each copy being exactly half the size of the last (see FIG-32.3).

LISTING-32.1

Adding Texture to an
Object

DarkBASIC Pro: Texturing 799

As a textured 3D object becomes smaller on the screen, the version of the image
used to texture that object changes from the the largest to the smallest.

The program in LISTING-32.2 demonstrates this effect.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load texture image ***
LOAD IMAGE "eyecol.bmp",1

REM *** Make cube ***
MAKE OBJECT CUBE 1,40
TEXTURE OBJECT 1,1
POSITION OBJECT 1,25,0,100

REM *** Move cube away from viewer ***
DO

POSITION OBJECT 1,25,0,OBJECT POSITION Z(1)+10
LOOP

REM *** End program ***
END

Activity 32.3

Type in and test the program in LISTING-32.2 (texture02.dbpro).

The effect is a fairly subtle one. Look closely at the image on the cube as it
moves away from your viewpoint. You should see it become less distinct as it
gets smaller.

The LOAD IMAGE Statement Again

We met the LOAD IMAGE statement back in Chapter 20 when we created image
objects which were then loaded into sprite objects. But the LOAD IMAGE
statement has an expanded form which allows us to dictate whether mipmaps are
to be created or not. This version of LOAD IMAGE has the format shown in
FIG-32.4.

In the diagram:

filename is a string specifying the name of the file to be
loaded.

FIG-32.3

An Image with Added
Mipmaps

FIG-32.4

The LOAD IMAGE
Statement

IMAGEIMAGELOADLOAD imgno tflagimgno tflag, ,, ,filenamefilename

LISTING-32.2

Mipmaps in Action

800 DarkBASIC Pro: Texturing

imgno is an integer specifying the ID to be allocated to
the image object being created.

tflag is an integer value specifying how the image is
to be stored.

0 - mipmaps are created
1 - no mipmaps are created
2 - loads the image in as a cubemap

texture (see the chapter on shaders)

When an image is loaded without mipmaps, any object using that image as a texture
must continue to use the original image even when the 3D object is greatly reduced
in size on the screen.

Activity 32.4

Modify your last program so that no mipmaps are used. To do this change the
LOAD IMAGE line to read:

LOAD IMAGE "eyecol.bmp",1,1

How does the texture on the cube differ in this program from the earlier
version?

Tiling
In the next example we'll create the floor of a dungeon by texturing a plane using
a cobblestone image.

The program uses the following logic:

���� ������	
��� �
���
����
� ����� �����
��
�
� �����
� �� �������
��
���
��� ����� �	���
�� ������	
��� �
���

The program itself is given in LISTING-32.3.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture image ***
LOAD IMAGE "stonetile3.jpg",1
REM *** Create large plane ***
MAKE OBJECT PLAIN 1,400,400
REM *** Rotate plane to horizontal ***
XROTATE OBJECT 1,90
REM *** Texture plane ***
TEXTURE OBJECT 1,1

REM *** End program ***
WAIT KEY
END

Activity 32.5

Type in and test the program in LISTING-32.3 (texture03.dbpro).

LISTING-32.3

Creating a Floor Texture

DarkBASIC Pro: Texturing 801

The screen dump in FIG-32.5 highlights the problem with the floor - the image has
stretched over the whole plane giving a floor that contains only a few unrealistically
large blocks rather than hundreds of smaller ones.

One way to solve the problem would be to use an image which actually shows the
hundreds of blocks that we need to create a realistic floor. However, this may not
be possible and the image would certainly have to be large if the visuals are to look
convincing as a character moves over the floor.

A second option is to make the texture image repeat itself several times over the
surface of the plane. This, for rather obvious reasons, is known as tiling.

The SCALE OBJECT TEXTURE Statement

Any image employed as a texture uses a UV coordinate system with the top left
being point (0,0) and the bottom right (1,1) no matter what the actual size of the
image is (see FIG-32.6).

When mapped to a flat plane, the image spreads itself over the object with point
(0,0) of the image mapping to the top-left corner of the plane and point (1,1) to the
bottom-right corner (see FIG-32.7).

FIG-32.5

Floor Texturing

FIG-32.6

The UV Coordinate
System used by a Texture
Image

(0,0) (1,0)

(0,1) (1,1)

FIG-32.7

The Default Mapping of
an Image to a Plane

Texture Image

Plane

(0,0)

(1,1)

802 DarkBASIC Pro: Texturing

Using the SCALE OBJECT TEXTURE statement, we can adjust this mapping
making only a part of the image stretch over the whole object, or have the image
duplicate itself several times creating a tiled effect as shown in FIG-32.8.

The SCALE OBJECT TEXTURE statement has the format shown in FIG-32.9.

In the diagram:

objno is an integer value specifying the object to which
the texture scaling is to be applied.

Uscale is a real number specifying the multiplication
factor along the U axis. Values less than 1 will
result in only part of the image being used.
Values greater than 1 will result in duplication
of the image over the 3D object.

Vscale is a real number specifying the multiplication
factor along the V axis. Values less than 1 will
result in only part of the image being used.
Values greater than 1 will result in duplication
of the image over the 3D object.

The first example shown in FIG-32.8 was created using the line:

SCALE OBJECT TEXTURE 1, 0.5, 0.5

while the second example was produced using:

SCALE OBJECT TEXTURE 1, 5.0, 5.0

The program in LISTING-32.4 demonstrates the effect of texture scaling by
applying cobblestones texture repeated 10 times in each direction to the plane.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture image ***
LOAD IMAGE "stonetile3.jpg",1
REM *** Create and position plain ***
MAKE OBJECT PLAIN 1, 400,400
XROTATE OBJECT 1, -90
REM *** Texture plain ***
TEXTURE OBJECT 1,1
REM *** Scale texture ***
SCALE OBJECT TEXTURE 1,10.0,10.0
REM *** End program ***
WAIT KEY
END

FIG-32.8

The Effects of Using
SCALE OBJECT
TEXTURE Part of the Image Used

as Texture
The Image Duplicated to Create

a Tiled Effect

FIG-32.9

The SCALE OBJECT
TEXTURE Statement

OBJECTOBJECT objnoobjnoTEXTURESCALE TEXTURESCALE Uscale VscaleUscale Vscale, ,, ,

LISTING-32.4

Changing the Texture's
Scaling

DarkBASIC Pro: Texturing 803

Activity 32.6

Type in and test the program given in LISTING-32.4 (texture04.dbpro).

Modify the scaling factors to each of the following settings and observe the
results:

Uscale Vscale
5.0 5.0
2.0 2.0
0.5 0.5
5.0 1.0
1.0 5.0

Change the 3D object used in your program from a plane to a sphere and retry
each of the settings given above.

Scaling a texture image in this way affects the image itself, so there is no way to
return to the original image settings within a program.

Seamless Tiling
For tiling to be convincing, the ends of the repeating image must butt together
without too obvious a join.

If we start with a simple picture and use it as a tiled texture (as shown in FIG-32.10)
we get a disappointing effect in which the edge of each image tile is very obvious.

To avoid this, we need to modify the image using a paint package such as Paint
Shop Pro or Photoshop.

The stages involved are shown in FIG-32.11.

FIG-32.10

A Visible Join Between
Tiles

804 DarkBASIC Pro: Texturing

It takes a bit of practice to achieve good results when creating a texture image, but
the results can be worth it.

Even when an image is not tiled, we can still have a problem with seams. For
example, when the image eyecol.bmp is applied as a texture to a sphere, the join
between the left and right edges of the image is quite apparent at the back of the
sphere, while the top and bottom edges are squeezed into single points at the two
"poles".

Activity 32.7

Attempt to modify eyecol.bmp (creating a new file named seamlesseye.bmp)
to give a seamless effect when textured onto a sphere.

Write a short program (act3207.dbpro) which applies the new file to a sphere
and then rotates the sphere continuously about its local y-axis.

Video Texture
It is even possible to use a video clip as a surface texture. To do this we need to start
by loading up a video with an instruction such as:

LOAD ANIMATION "mv1.mpg",1

The PLAY ANIMATION TO IMAGE Statement

Now we need to transfer the video to an image object and this is done using the
PLAY ANIMATION TO IMAGE statement which has the format shown in
FIG-32.12.

FIG-32.11

Creating an Image for
Seamless Tiling

Load the original image into the
paint program.

Select a section of the image
along the whole of the left edge.

Copy selected area, mirror it,
and move it to the right edge.

Repeat the process, copying
a bottom section to the top.

The image can now be tiled
seamlessly.

Erase parts of the copy to make
it merge with the main image.

The main image has been
toned down to emphasise

the selected area

Of course, it is equally
possible to copy the
right edge area to the left
side and the top to the
bottom.

You should choose
whatever combinations
suit the image in
question.

DarkBASIC Pro: Texturing 805

In the diagram:

varea is an integer value specifying the video that is to
be copied to an image area.

imgno is an integer specifying the image area to which
the video is to be copied.

x1,y1,x2,y2 are the coordinates for the top-left and bottom right
space which the video is to occupy.

The size of the play area (as set by x1, y1, x2, y2) affects the quality of the image
when it appears on the 3D object; use too small a set of values and the video will
be heavily pixellated; use too large a set of values and displaying the video will put
too great a load on the processor/video card and slow the whole thing down.

Once the video has been transferred to the image object, we can then use the image
to texture a 3D object in the usual manner. LISTING-32.5 demonstrates the effect
by placing a video on a rotating cube.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load video ***
LOAD ANIMATION "lion.mpg",1

REM *** Transfer video to image ***
PLAY ANIMATION TO IMAGE 1,1,0,0,200,200

REM *** Create cube and texture with video ***
MAKE OBJECT CUBE 1,40
TEXTURE OBJECT 1,1

REM *** Move cube away from viewer ***
POSITION OBJECT 1,0,0,100

REM *** Rotate cube ***
DO

TURN OBJECT LEFT 1,1.0
PITCH OBJECT DOWN 1,1.0

LOOP

REM *** End program ***
END

Activity 32.8

Type in and test the program given in LISTING-32.5 (texture05.dbpro).

Modify the program to use very low values for the bottom right corner of the
video (i.e. 10,10) and very high values (i.e. 1000,1000). What affect do these
changes have on the final result?

FIG-32.12

The PLAY ANIMATION TO IMAGE Statement

ANIMATIONANIMATION IMAGETOPLAY IMAGETOPLAY , ,, ,vareavarea imgnoimgno x1 y1 y2x2x1 y1 y2x2, ,,, ,,

LISTING-32.5

Using a Video as a
Texture

806 DarkBASIC Pro: Texturing

Other Texture Effects

The SET OBJECT TEXTURE Statement

An alternative way to achieve a seamless tiled texture is to use the SET OBJECT
TEXTURE statement that adjusts the way in which each copy of the basic image
is tiled onto the surface of a 3D object. The statement has the format shown in
FIG-32.13.

In the diagram:

objno is an integer value specifying the object whose
texture is to be modified.

tmode is an integer value (1,2,3,4) which directly affects
how the tiled texture is applied to the object.

1 - normal tiling.
2 - images are mirrored/flipped so that

identical edges meet.
3 - The last pixel along each edge is

extended over the remainder of the
surface.

4 - The image appears only once. The
remainder of the surface is black.

mflag Determines if mipmapping is to be used.
0 - mipmapping used
1 - no mipmapping

In FIG-32.14 we see the effects of each possible value for tmode when applying
eyecol.bmp as a tiled (2 by 2) texture on a cube.

The program in LISTING-32.6 shows a tile textured cube with the tmode value of
the SET OBJECT TEXTURE statement set to 2.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load image ***
LOAD IMAGE "eyecol.bmp",1

REM *** Create a plain ***
MAKE OBJECT PLAIN 1,200,200

continued on next page

FIG-32.13

The SET OBJECT
TEXTURE Statement

OBJECTSET OBJECTSET objnoobjnoTEXTURETEXTURE tmode mflagtmode mflag, ,, ,

FIG-32.14

The Effects of Using
Different tmode Settings

set object texture 1,1,0 set object texture 1,2,0 set object texture 1,3,0 set object texture 1,4,0

LISTING-32.6

Using the SET OBJECT
TEXTURE Statement

DarkBASIC Pro: Texturing 807

REM *** Texture object ***
TEXTURE OBJECT 1,1
SCALE OBJECT TEXTURE 1,2,2

REM *** Modify tile mapping ***
SET OBJECT TEXTURE 1,4,0

REM *** End program ***
WAIT KEY
END

Activity 32.9

Type in and test the program in LISTING-32.6 (texture06.dbpro).

Try other settings for tmode and check the effects produced.

The SCROLL OBJECT TEXTURE Statement

The texture image can be mapped onto an object with a varying degree of offset
along either the U or V axes. The overall effect is to modify which part of the texture
image is placed at the top left corner of the object.

The effect is created using the SCROLL OBJECT TEXTURE statement which has
the format shown in FIG-32.15.

In the diagram:

objno is an integer value specifying the object whose
texture is to be scrolled.

Uoffset,Voffset are a pair of real values representing the
coordinates of the image that are to be the
top-left corner of the texture when placed on a
3D object.

Examples of this statement in use are shown in FIG-32.16 where eyecol.bmp is
mapped to a plane object with various Uoffset, Voffset values.

A complete program demonstrating the effect is given in LISTING-32.7.

FIG-32.16

The Effects of the
SCROLL OBJECT
TEXTURE Statement

scroll object texture 1,0.1,0.0 scroll object texture 1,0.0,0.1 scroll object texture 1,0.1,0.1

FIG-32.15

The SCROLL OBJECT
TEXTURE Statement

OBJECTSCROLL OBJECTSCROLL objnoobjnoTEXTURETEXTURE Uoffset VoffsetUoffset Voffset, ,, ,

LISTING-32.6
(continued)

Using the SET OBJECT
TEXTURE Statement

808 DarkBASIC Pro: Texturing

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load image ***
LOAD IMAGE "eyecol.bmp",1

REM *** Create and texture plane object ***
MAKE OBJECT PLAIN 1,200,200
TEXTURE OBJECT 1,1

REM *** Offset the texture placed on the image***
SCROLL OBJECT TEXTURE 1,0.1,0.0

REM *** End program ***
WAIT KEY
END

Activity 32.10

Type in and test the program in LISTING-32.7 (texture07.dbpro).

The effect makes a permanent change to the texture for that image, so repeating the
same statement creates a further offset.

Activity 32.11

In your last program, add another SCROLL OBJECT TEXTURE statement
immediately after the first using the same values.

How does this affect the texture?

By placing the SCROLL OBJECT TEXTURE statement in a loop, the texture can
scroll over the surface of the 3D object.

Activity 32.12

Remove the second SCROLL OBJECT TEXTURE statement from your last
program and insert the remaining SCROLL OBJECT TEXTURE statement in
a DO..LOOP structure.

What affect does this have on the 3D object's texture?

Modify the SCROLL OBJECT TEXTURE statement so that the texture
scrolls horizontally rather than vertically.

Activity 32.13

In Chapter 31 you created a program in which two spheres followed the
movement of the mouse pointer (object3D11.dbpro).

Modify that program so that the spheres are textured using seamlesseye.bmp.

Add the appropriate SCROLL OBJECT TEXTURE statements so that the
pupils of the eyes face the mouse pointer.

LISTING 32.7

Using the SCROLL
OBJECT TEXTURE
Statement

DarkBASIC Pro: Texturing 809

The SET OBJECT TRANSPARENCY Statement

When an image containing black is mapped to a sprite, any black areas in the image
are automatically transparent when the sprite appears on the screen. However, this
is not the case with 3D objects.

To demonstrate this, the next program (see LISTING-32.8) uses the image shown
in FIG-32.17 as the texture on a rotating cube.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load texture image ***
LOAD IMAGE "DoNot.bmp",2

REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100

REM *** Texture cube with image ***
TEXTURE OBJECT 1,2

REM *** Rotate cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP

REM *** End program ***
END

Activity 32.14

Type in and test the program given in LISTING-32.8 (texture08.dbpro).

However, we can force a 3D object to make black (or whatever other colour as been
set as the background colour using the SET COLOR KEY statement) transparent
using the SET OBJECT TRANSPARENCY statement which has the format shown
in FIG-32.18.

In the diagram:

objno is an integer value specifying the object whose
background texture colour is to be made
transparent.

FIG-32.17

Image used to Texture a
Cube

LISTING-32.8

Black Textured Areas are
not Transparent on a 3D
Object

A colour other than black
can become the
transparent colour using
the SET COLOR KEY
statement.

FIG-32.18

The SET OBJECT
TRANSPARENCY

OBJECTOBJECT objnoobjnoTRANSPARENCYTRANSPARENCY transflagtransflag,,SETSET

810 DarkBASIC Pro: Texturing

transflag is 0 or 1.
0 - background colour not transparent.
1 - background colour transparent.

Activity 32.15

Modify your last program by adding the line

SET OBJECT TRANSPARENCY 1,1

immediately before the DO..LOOP structure.

How does this affect the appearance of the cube.

The SET DETAIL MAPPING ON Statement

A second image can be combined with the basic texture image of an object to create
a new texture consisting of both images.

For example, if we take the images shown in FIG-32.19 with image 1 being the
basic texture and image 2 the overlaid texture, then we achieve the effect shown in
FIG-32.20 when these are applied to a cube.

Notice that any black areas in image 2 are automatically transparent.

A second image is applied to the texture of an object using the SET DETAIL
MAPPING ON statement which has the format shown in FIG-32.21.

In the diagram:

objno is an integer value specifying the object to which
a second texture image is to be added.

FIG-32.19

The Images Used To
Texture a 3D Object

Image 1 Image 2

FIG-32.20

The Two Images Applied
to a Cube

FIG-32.21

The SET DETAIL
MAPPING ON Statement

DETAILSET DETAILSET objnoobjnoMAPPING ONMAPPING ON ,, imgnoimgno

DarkBASIC Pro: Texturing 811

imgno is an integer value specifying the image object
containing the picture to be used as a second
texture.

LISTING-32.9 creates the rotating cube shown above. The main lines of code are

LOAD IMAGE "DoNot.bmp",2

which loads the secondary image being used and

SET DETAIL MAPPING ON 1,2

which applies this image as an overlaid texture.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture images ***
LOAD IMAGE "textureWood.jpg",1
LOAD IMAGE "DoNot.bmp",2
REM *** Create and texture cube ***
MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1

REM *** Add secondary texture ***
SET DETAIL MAPPING ON 1,2

REM *** Position cube ***
POSITION OBJECT 1,25,0,100

REM *** Rotate cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP
REM *** End program ***
END

Activity 32.16

Type in and test the program given in LISTING-32.9 (texture09.dbpro).

Replace DoNot.bmp with DoNotMag.bmp which contains black text on a
magenta background. Set magenta as the transparent colour using the SET
IMAGE COLORKEY statement.

We are limited to a single image when overlaying an object's texture with detail.
So, attempting to add a second detail image will simply remove the first from the
object.

Activity 32.17

Add FlagMag.bmp as a second detail image to the cube object in your last
program.

What effect does this create?

If an object's texture has been tiled using the SCALE OBJECT TEXTURE
statement, any additional image added using SET DETAIL MAPPING ON will
also be tiled to the same extent as the original texture.

LISTING-32.9

Using a Secondary
Texture on a 3D Object

812 DarkBASIC Pro: Texturing

Activity 32.18

In your last program, remove all references to the flagmag.bmp file. Create a
tiled effect on the cube by using the SCALE OBJECT TEXTURE statement
with the Uscale and Vscale parameters both set to 2.

How is the DETAIL MAPPING image on the cube affected by the tiling?

The SET OBJECT FILTER Statement

Different methods of texturing can be specified using the SET OBJECT FILTER
statement. The differences achieved have little obvious effect on the visible
appearance of the textured object itself, but modify the algorithm used to create that
texture. The statement has the format shown in FIG-31-22.

In the diagram:

objno is an integer value specifying the object whose
texture is to be filtered.

filterflag is 0, 1, or 2
0 - always uses the original image

to texture (it never uses the smaller
images created by mipmapping).

1 - no smoothing is used.
2 - uses linear filtering.

The program in LISTING-32.10 creates 3 spheres, each textured using one of the
filter options. You may see a slight difference in the appearance of the spheres as
they move off into the background and reduce in size.

REM *** Set screen resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load image used as texture ***
LOAD IMAGE "grid8by8.bmp",1,1
REM *** Create three spheres ***
MAKE OBJECT SPHERE 1 ,40
MAKE OBJECT SPHERE 2 ,40
MAKE OBJECT SPHERE 3 ,40

REM *** Texture each sphere ***
TEXTURE OBJECT 1,1
TEXTURE OBJECT 2,1
TEXTURE OBJECT 3,1

REM *** Set different filter for each sphere ***
SET OBJECT FILTER 1, 0
SET OBJECT FILTER 2, 1
SET OBJECT FILTER 3, 2

REM *** Position spheres ***
POSITION OBJECT 1,-42,0,0
POSITION OBJECT 2,0,0,0
POSITION OBJECT 3,42,0,0

continued on next page

FIG-32.22

The SET OBJECT
FILTER Statement

OBJECTSET OBJECTSET objnoobjnoFILTERFILTER filterflagfilterflag,,

LISTING-32.10

Using the SET OBJECT
FILTER Statement

DarkBASIC Pro: Texturing 813

REM *** Moves spheres ***
FOR z = 1 TO 4000

MOVE OBJECT 1,1
MOVE OBJECT 2,1
MOVE OBJECT 3,1
WAIT 10

NEXT z

REM *** End program ***
WAIT KEY
END

Activity 32.19

Type in and test the program given above (texture10.dbpro).

Summary
� Texturing involves mapping an image onto the surface of a 3D object.

� Use LOAD IMAGE to load any image which is to be used to texture a 3D object.

� Use TEXTURE OBJECT to map an image to an object.

� Images stretch automatically to fit the surface of an object.

� On a cube or box the image is repeated on each face.

� On other 3D objects, the image appears only once.

� Mipmaps are smaller versions of the original image which are used to speed up
mapping when a textured object becomes much smaller than the original image.

� Tiling is the application of an image multiple times to the same surface.

� Use SCALE OBJECT TEXTURE to create a tiled texture.

� To create a seamless tile, make sure the opposite edges are complementary.

� Use PLAY ANIMATION TO IMAGE and TEXTURE OBJECT to display a
video on the surface of an object.

� Use SET OBJECT TEXTURE to specify how an image is mapped to a surface.

� Use SCROLL OBJECT TEXTURE to create an offset mapping of the image on
a 3D surface.

� Use SET OBJECT TRANSPARENCY to make black areas of a 3D object
disappear.

� Use SET DETAIL MAPPING ON to apply a second image to an already textured
object.

� Use SET OBJECT FILTER to modify how an image is filtered when being
mapped onto an object.

LISTING-32.10
(continued)

Using the SET OBJECT
FILTER Statement

814 DarkBASIC Pro: Texturing

Other Visual Effects

Introduction
Although adding texture to a 3D object is the commonest way of changing an
object's appearance, it is by no means the only option available. In this section we'll
see some other options that are available to us in DarkBASIC Pro.

Changing Colour and Transparency

The COLOR OBJECT Statement

Rather than add a texture to a 3D object, we can give it a surface of a specific colour
using the COLOR OBJECT statement which has the format shown in FIG-32.23.

In the diagram:

objno is an integer value specifying the object which is
to be coloured.

colour is an integer value specifying the colour to be
used on the object's surface.

For example, we could give object 1 a red surface using the line:

COLOR OBJECT 1, RGB(255,0,0)

An example of this statement in operation is given in LISTING-32.11 which colours
a rotating cube in red, changing to green when a random event occurs.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Seed random number generator ***
RANDOMIZE TIMER()
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100
REM *** Colour cube red ***
COLOR OBJECT 1, RGB(255,0,0)
REM *** Rotate Cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
REM *** One chance in 1000 of changing to green ***
IF RND(1000) = 500

COLOR OBJECT 1, RGB(0,255,0)
ENDIF

LOOP
REM *** End program ***
END

FIG-32.23

The COLOR OBJECT
Statement

OBJECTOBJECT objnoobjnoCOLORCOLOR colourcolour,,

LISTING-32.11

Using COLOR OBJECT

DarkBASIC Pro: Texturing 815

Activity 32.20

Type in and test the program given in LISTING-32.11 (texture11.dbpro).

A coloured surface cannot be used in conjunction with a main texture, but secondary
textures (created using SET DETAIL MAPPING ON) may still be used.

Activity 32.21

Modify your last program so that DoNot.bmp is used as a secondary texture on
the surface of the cube.

The GHOST OBJECT ON Statement

In FIG-32.24 we can see a cube which is semi-transparent with the grided plane in
the background showing through the cube.

We can create this effect using the GHOST OBJECT ON statement which has the
format shown in FIG-32.25.

In the diagram:

objno is an integer value specifying the 3D object to
be made semi-transparent.

ghostflag is 0 to 5.
0 - object is semi-transparent
1 - object uses negative transparency
2 - object is semi-transparent but lighter
3 - uses the image's alpha channel
4 - similar to 1 but lighter
5 - object is opaque

The program in LISTING-32.12 demonstrates the effect of this instruction by
rotating the cube with a textured plane in the background.

FIG-32.24

A Transparent Cube

You'll have to look
closely to see the cube!

FIG-32.25

The GHOST OBJECT
ON Statement

OBJECTOBJECT objnoobjnoGHOSTGHOST ,, ghostflagghostflagONON

816 DarkBASIC Pro: Texturing

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load texture images ***
LOAD IMAGE "grid8by8.bmp",1
LOAD IMAGE "DoNot.bmp",2

REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100

REM *** Texture cube ***
TEXTURE OBJECT 1,1

REM *** Create background plane ***
MAKE OBJECT PLAIN 2,100,100
TEXTURE OBJECT 2, 2
POSITION OBJECT 2,0,0,200

REM *** Create semi-transparent cube ***
GHOST OBJECT ON 1,0

REM *** Rotate cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP

REM *** End program ***
END

Activity 32.22

Type in and test the program given in LISTING-32.12 (texture12.dbpro).

Modify the transflag value in the GHOST OBJECT ON statement and
observe the effects of the various settings.

The GHOST OBJECT OFF Statement

The semi-transparency effect created by GHOST OBJECT ON can be disabled
using the GHOST OBJECT OFF statement which has the format shown in
FIG-32.26.

In the diagram:

objno is an integer value specifying the 3D object in
which the semi-transparency mode is switched
off.

The FADE OBJECT Statement

The amount of light reflected from the surface of a 3D object can be modified using
the FADE OBJECT statement. This allows settings varying between no light
reflected and twice normal reflection. The statement has the format shown in
FIG-32.27.

FIG-32.26

The GHOST OBJECT
OFF Statement

OBJECTOBJECT objnoobjnoGHOSTGHOST OFFOFF

LISTING-32.12

Using the GHOST
OBJECT ON Statement

DarkBASIC Pro: Texturing 817

In the diagram:

objno is an integer value specifying the 3D object
whose reflective index is to be changed.

value is an integer value between 0 and 200. A value of
zero means that the object will reflect no light;
a value of 100 creates normal amount of reflected
light; a value of 200 gives twice the normal
amount of reflected light.

The program in LISTING-32.13 demonstrates the effect of this statement by
gradually reducing the reflective value from 200 to zero.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32

REM *** Load texture images ***
LOAD IMAGE "textureWood.jpg",1
LOAD IMAGE "DoNot.bmp",2

REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100

REM *** Texture cube ***
TEXTURE OBJECT 1,1

REM *** Create background plain ***
MAKE OBJECT PLAIN 2,100,100
TEXTURE OBJECT 2, 2
POSITION OBJECT 2,0,0,200

REM *** Start reflective value at 200 ***
reflectivity = 200

REM *** rotate cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
FADE OBJECT 1,reflectivity
REM *** Decrement reflective value until it reaches zero ***
IF reflectivity > 0

DEC reflectivity
ENDIF
WAIT 10

LOOP

REM *** End program ***
END

Activity 32.23

Type in and test the program given in LISTING-32.13 (texture13.dbpro).

When used in combination with the GHOST OBJECT ON statement, the FADE
OBJECT statement can make a semi-transparent object disappear completely.

LISTING-32.13

Using FADE OBJECT to
make a Transparent
Object Disappear

FIG-32.27

The FADE OBJECT
Statement

OBJECTOBJECT objnoobjnoFADEFADE ,, valuevalue

818 DarkBASIC Pro: Texturing

Activity 32.24

In your last program, add the line

GHOST OBJECT ON 1,0

immediately before the DO..LOOP structure.

How does this affect the cube?

There's still more to be said about texturing objects but we'll leave that to a later
chapter after we've covered other basic concepts such as cameras and lighting.

Summary
� Use COLOR OBJECT to tint the surface of a 3D object.

� Use GHOST OBJECT ON to make an object transparent.

� Use GHOST OBJECT OFF to make a transparent object opaque.

� Use FADE OBJECT to reduce the amount of light reflected by an object.

� When used on a transparent object, FADE OBJECT can make that object
invisible.

� When used on an opaque object, FADE OBJECT can make that object
completely black.

DarkBASIC Pro: Texturing 819

Images with an Alpha Channel

Introduction
As we saw back in Chapter 30, some picture files contain an alpha channel which
can affect the visibilty of the main image. This type of picture file, when used as a
texture, affects the overall result obtained.

Using Images with an Alpha Channel
The image windmillshaped.tga contains an image and an alpha channel as shown
in FIG-32.28.

We've already seen that the SET OBJECT TRANSPARENCY statement affects
the black area of an texture image, but the statement also controls how an alpha
channel within an image affects the final texture.

The program in LISTING 32-14 textures as cube using windmillshaped.tga. With
the default settings, the alpha channel within the image has no effect on the texturing
of the cube, but after a SET OBJECT TRANSPARENCY statement is used to
modify the texturing, the alpha channel changes the final look of the cube.

REM *** Set display resolution ***
SET DISPLAY MODE 1280, 1024,32

REM *** Create cube ***
MAKE OBJECT CUBE 1,10

REM *** Texture cube ***
LOAD IMAGE "windmillshaped.tga",1
TEXTURE OBJECT 1,1

REM *** Rotate cube ***
DO

REM *** IF key pressed, use alpha channel ***
IF INKEY$() <> ""

SET OBJECT TRANSPARENCY 1,1
ENDIF
TURN OBJECT LEFT 1,1

LOOP
REM *** End program ***
END

Activity 32.25

Type in and test the program in LISTING-32.14 (texture14.dbpro).

LISTING-32.14

Texturing with
Alpha-Channel Images

FIG-32.28

An Image and its Alpha
Channel

Image Alpha Channel

820 DarkBASIC Pro: Texturing

Notice that the other parts of the image do not disappear completely when the alpha
channel is activated. This is because the darkened areas of the alpha channel are
grey and not black. If black had been used, all other parts of the image would have
become invisible.

An image with an alpha channel also produces an effect when option 3 is used with
the GHOST OBJECT ON statement.

Activity 32.26

In your last program, change the line

SET OBJECT TRANSPARENCY 1,1

to

GHOST OBJECT ON 1,3

Observe how this affect the program's display.

Summary
� Use SET OBJECT TRANSPARENCY with an alpha channel image to create

transparent or semitransparent texturing effects.

� Use GHOST OBJECT ON with option 3 to make use of the alpha channel
information in creating the final ghosting effect.

DarkBASIC Pro: Texturing 821

Creating a Complex 3D Shape

Introduction
By combining the basic 3D shapes available to us we can create almost any complex
shape. However, this may take a considerable amount of work and require a great
deal of code. In reality we would probably create objects such as these in a separate
3D drawing package and then import the resulting file into our DarkBASIC Pro
program (we'll see how to do this in Chapter 36). However, just to give us some
practice, we'll try creating a simple castle using only DarkBASIC Pro.

Designing the Castle
We are going to save ourselves a great deal of time later if we start by doing a grided
plan of the castle to give ourselves the basic layout and sizes. FIG-32.29 shows a
plan of the castle.

Next, we need to create a more traditional drawing showing the characteristics of
the castle (see FIG-32.30). We might also draw specific parts in more detail.

FIG-32.29

A Rough Sketch of the
Object Required

822 DarkBASIC Pro: Texturing

Gathering the Components

The actual texture files being used need to be obtained or created. If you're not much
of an artist, then you'll find plenty of texture files on the Internet, but if you're
intending to create a commercial product, remember that almost everything you see
on the Internet will be owned by someone and they expect to be paid if you are
going to use their material. Even material that is advertised as free may still need
to be paid for when used in a commercial product.

The textures used on the castle are shown in FIG-32.31.

Creating the Code
The coding (see LISTING-32.15) is long but fairly straight forward. The complete
castle is created by a function, but this calls other functions which draw the various
parts of the castle.

Splitting the code in this way will help us keep the structure as understandable as
possible.

FIG-32.31

Textures Used

Filename :
Object :

CobbleStones.jpg
path

Filename :
Object :

rock2.jpg
castle floor

Filename :
Object :

tree.jpg
trees lining path

Filename :
Object :

tiles.jpg
castle and turret roofs

Filename :
Object :

grass1.jpg
lawn

Filename :
Object :

ceil_U3_01.jpg
castle ceiling

Filename :
Object :

stone.jpg
castle walls and
turrets

FIG-32.30

A More Detailed
Design of the Castle

DarkBASIC Pro: Texturing 823

The Code

REM *** Building Components ***
REM *** Texture Images ***
#CONSTANT grass 1
#CONSTANT road 2
#CONSTANT tree 3
#CONSTANT flooring 4
#CONSTANT wall 5
#CONSTANT roofing 6
#CONSTANT cover 8
#CONSTANT trellis 9
#CONSTANT transport 10
REM *** 3D Objects ***
#CONSTANT lawn 1
#CONSTANT approach 2
#CONSTANT floor1 3
#CONSTANT ceiling 5
#CONSTANT tree1 7
#CONSTANT frontwall 51
#CONSTANT backwall 52
#CONSTANT leftwall 53
#CONSTANT rightwall 54
#CONSTANT innerwall 55
#CONSTANT turret1 56
#CONSTANT turretroof1 57
#CONSTANT turret2 58
#CONSTANT turretroof2 59
#CONSTANT turret3 60
#CONSTANT turretroof3 61
#CONSTANT turret4 62
#CONSTANT turretroof4 63
#CONSTANT roof1 64
#CONSTANT column 70

REM *** Set screen resolution ***
SET DISPLAY MODE 1280,1024,32
DrawCastle()
WAIT KEY
END

FUNCTION DrawCastle()
LoadImages()
DrawGrounds()
DrawExternalWalls()
DrawRoofandCeiling()
DrawTurrets()
DrawInternalColumns()

ENDFUNCTION

FUNCTION LoadImages()
REM *** Load texture images ***
LOAD IMAGE "grass1.jpg",lawn
LOAD IMAGE "CobbleStones.jpg",road
LOAD IMAGE "tree.jpg",tree
LOAD IMAGE "rock2.jpg",flooring
LOAD IMAGE "stone.jpg",wall
LOAD IMAGE "tiles.jpg",roofing
LOAD IMAGE "ceil_U3_01.jpg",cover

ENDFUNCTION

continued on next page

LISTING-32.15

Drawing the Castle

824 DarkBASIC Pro: Texturing

FUNCTION DrawGrounds()
REM *** Create lawn ***
MAKE OBJECT PLAIN lawn, 500,700
TEXTURE OBJECT lawn, grass
SCALE OBJECT TEXTURE lawn, 100,100
XROTATE OBJECT lawn,-90
POSITION OBJECT lawn,250,0,350
SET DETAIL MAPPING ON lawn,transport
REM *** Create approach road ***
MAKE OBJECT PLAIN approach, 50,700
TEXTURE OBJECT approach,road
SCALE OBJECT TEXTURE approach,8,50
XROTATE OBJECT approach,-90
POSITION OBJECT approach, -25,0,350
REM *** Create castle floor ***
MAKE OBJECT PLAIN floor1, 550,300
TEXTURE OBJECT floor1, flooring
SCALE OBJECT TEXTURE floor1,100,100
XROTATE OBJECT floor1,-90
POSITION OBJECT floor1,225,0,850
DrawTrees()

ENDFUNCTION

FUNCTION DrawExternalWalls()
REM *** Create front wall ***
MAKE OBJECT PLAIN frontwall,550,100
TEXTURE OBJECT frontwall,wall
SCALE OBJECT TEXTURE frontwall,30,6
POSITION OBJECT frontwall, 225,50,700

REM *** Create back wall ***
MAKE OBJECT PLAIN backwall,550,100
TEXTURE OBJECT backwall,wall
SCALE OBJECT TEXTURE backwall,50,10
POSITION OBJECT backwall, 225,50,1000

REM *** Create left wall ***
MAKE OBJECT PLAIN leftwall,300,100
TEXTURE OBJECT leftwall,wall
SCALE OBJECT TEXTURE leftwall,30,10
YROTATE OBJECT leftwall, -90
POSITION OBJECT leftwall,-50,50,850

REM *** Create right wall ***
MAKE OBJECT PLAIN rightwall,300,100
TEXTURE OBJECT rightwall,wall
SCALE OBJECT TEXTURE rightwall,30,10
YROTATE OBJECT rightwall,90
POSITION OBJECT rightwall,500,50,850

ENDFUNCTION

FUNCTION DrawTurrets()
REM *** Create first turret ***
MAKE OBJECT CYLINDER turret1,200
SCALE OBJECT turret1,40,100,40
MAKE OBJECT CONE turretroof1,81
REM *** Texture turret ***
TEXTURE OBJECT turret1,wall
SCALE OBJECT TEXTURE turret1,10,10
TEXTURE OBJECT turretroof1,roofing
SCALE OBJECT TEXTURE turretroof1,5,10
REM *** Position turret ***
POSITION OBJECT turret1, -25,100,970
POSITION OBJECT turretroof1,-25,240,970

continued on next page

LISTING-32.15
(continued)

Drawing the Castle

DarkBASIC Pro: Texturing 825

REM *** Second turret ***
MAKE OBJECT CYLINDER turret2,200
SCALE OBJECT turret2,40,100,40
MAKE OBJECT CONE turretroof2,81
REM *** Texture turret ***
TEXTURE OBJECT turret2,wall
SCALE OBJECT TEXTURE turret2,10,10
TEXTURE OBJECT turretroof2,roofing
SCALE OBJECT TEXTURE turretroof2,5,10
REM *** Position turret ***
POSITION OBJECT turret2, 475,100,970
POSITION OBJECT turretroof2,475,240,970
REM *** Third turret ***
MAKE OBJECT CYLINDER turret3,200
SCALE OBJECT turret3,40,100,40
MAKE OBJECT CONE turretroof3,81
REM *** Texture turret ***
TEXTURE OBJECT turret3,wall
SCALE OBJECT TEXTURE turret3,10,10
TEXTURE OBJECT turretroof3,roofing
SCALE OBJECT TEXTURE turretroof3,5,10
REM *** Position turret ***
POSITION OBJECT turret3, -25,100,725
POSITION OBJECT turretroof3,-25,240,725
REM *** Fourth turret ***
MAKE OBJECT CYLINDER turret4,200
SCALE OBJECT turret4,40,100,40
MAKE OBJECT CONE turretroof4,81
REM *** Texture turret ***
TEXTURE OBJECT turret4,wall
SCALE OBJECT TEXTURE turret4,10,10
TEXTURE OBJECT turretroof4,roofing
SCALE OBJECT TEXTURE turretroof4,5,10
REM *** Position turret ***
POSITION OBJECT turret4, 475,100,725
POSITION OBJECT turretroof4,475,240,725

ENDFUNCTION

FUNCTION DrawRoofAndCeiling()
REM *** Create main roof ***
MAKE OBJECT PLAIN roof1,550,300
REM *** Texture main roof ***
TEXTURE OBJECT roof1,roofing
SCALE OBJECT TEXTURE roof1,50,10
REM *** Position roof ***
XROTATE OBJECT roof1, -90
POSITION OBJECT roof1,225,100,850
REM *** Create ceiling ***
MAKE OBJECT PLAIN ceiling,550,300
REM *** Texture ceiling ***
TEXTURE OBJECT ceiling,cover
SCALE OBJECT TEXTURE ceiling,5,2
REM *** Position ceiling ***
XROTATE OBJECT ceiling, -90
POSITION OBJECT ceiling,225,99,850

ENDFUNCTION

FUNCTION DrawInternalColumns()
RANDOMIZE TIMER()
FOR col = column TO column + 80

MAKE OBJECT BOX col,20,99.8,20
TEXTURE OBJECT col,wall
SCALE OBJECT TEXTURE col,5,30
POSITION OBJECT col,RND(515)-20,49.95, RND(270)+710

NEXT col
ENDFUNCTION

continued on next page

LISTING-32.15
(continued)

Drawing the Castle

826 DarkBASIC Pro: Texturing

FUNCTION DrawTrees()
REM *** Create trees ***
FOR c = tree1 TO tree1 + 30

MAKE OBJECT PLAIN c,25,35
TEXTURE OBJECT c, tree
SET OBJECT TRANSPARENCY c,1
POSITION OBJECT c,-45,17,(c-6) * 17.5

NEXT c
ENDFUNCTION

The function DrawInternalColumns() adds randomly placed columns within the
castle. This will allow our player to have obstacles to navigate without having to
go to a great deal of trouble designing an exact layout for the castle's interior.

The DrawTrees() function draws a set of trees by texturing a set of planes with a
tree image.

Activity 32.27

Type in and test the program given above (castle01.dbpro).

Activity 32.28

Remove the main section from the program, leaving only the constants and
functions. Save this as castle.dbpro.

Activity 32.29

Create a program (gallows.dbpro) containing a function, DrawGallows(), that
produces a 3D gallows similar to that in the sketch below. Use any appropriate
textures.

The gallows platform should be centred on (-125,7.5,0) and be 15 units high,
and 50 units in width and depth. Place the gallows on a 300 by 300 cobbled
plane.

In the main section of the program include the lines

POSITION CAMERA 0,8,-100

POINT CAMERA -150,10,0

after the call to the DrawGallows() function. This will ensure that the camera
is pointing at the gallows.

LISTING-32.15
(continued)

Drawing the Castle

DarkBASIC Pro: Texturing 827

Sky Spheres
Both the castle and the gallows look a bit out of place with the blue background.
One way to create a more natural environment is to place a large sphere round the
whole thing and texture that sphere with an image of the sky. This is known as a
sky sphere. FIG-32.32 shows the results obtained by adding a sky sphere to the
gallows program.

To implement a sky sphere in our gallows program, we'll start by making the ground
plane set up in DrawGallows() a bit larger

MAKE OBJECT PLAIN GroundObj,2000,2000

and then increase the tiling so the cobbles don't get too large:

SCALE OBJECT TEXTURE GroundObj,150,150

These are the only changes required in the DrawGallows() function. Now we can
add a few lines to the main section. First we need the image to be used to texture
the sphere with a sky effect:

LOAD IMAGE "sky.jpg",1

Next we can create the sphere with the same diameter as the plane:

MAKE OBJECT SPHERE 1,-2000,50,50

Notice that the sphere has been created with extra polygons. This helps smooth out
the sky background.

Apparently all we need to do now is texture the sphere:

TEXTURE OBJECT 1,1

FIG-32.32

Using a Sky Sphere

828 DarkBASIC Pro: Texturing

Activity 32.30

Modify your gallows.dbpro program using the lines given above. The main
section should be coded as:

REM *** Set up screen ***

SET DISPLAY MODE 1280,1024,32

DrawGallows()

REM *** Create the sky sphere ***

LOAD IMAGE "sky.jpg",1

MAKE OBJECT SPHERE 1,2000,50,50

TEXTURE OBJECT 1,1

REM *** Set up camera ***

POSITION CAMERA 0,8,-100

POINT CAMERA -150,10,0

REM *** End program ***

WAIT KEY

END

Don't worry if you don't see any sky!

We can't see the texture on the sphere because we're on the inside of the sphere and
DarkBASIC Pro has culled the polygons that make up the sphere.

There are two ways to solve this problem. The first is to switch off culling on the
sphere. This can be done using the line:

SET OBJECT CULL 1,0

Activity 32.31

Add the above line to the main section of your code. Is the sky now visible?

An alternative way of displaying the sphere's texture is to turn the sphere inside out!
This is done by specifying a negative size for the sphere when it is being created.

Activity 32.32

Change the line

MAKE OBJECT SPHERE 1,2000,50,50

to have a negative size value:

MAKE OBJECT SPHERE 1,-2000,50,50

and remove the SET OBJECT CULL statement.

How does this affect the sphere's texture?

DarkBASIC Pro: Texturing 829

To cure the problem of an inverted mirror image (which isn't actually a problem in
this case) we need to save the original image as an inverted mirror image in the first
place and this will then be reversed when the image is used as a texture.

Activity 32.33

If you have an appropriate paint package, invert and mirror the image sky.jpg
(save the resulting image as skyIM.jpg) and use the new image as a texture for
the sky sphere.

If you don't have an appropriate package, the inverted mirror image is
supplied with the images for this chapter.

Summary
� A sky sphere allows us to create a sky affect around our 3D world.

� A sky sphere is a large sphere textured with an image of the sky.

� To make the sphere's texture visible from within the sphere, switch off the
sphere's culling or create and inverted mirror image of the sky and use it to texture
a sphere with a negative diameter value.

830 DarkBASIC Pro: Texturing

Solutions
Activity 32.1

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture image ***
LOAD IMAGE "eyecol.bmp",1
REM *** Create cube ***
MAKE OBJECT CUBE 1, 40
REM *** Add texture to cube ***
TEXTURE OBJECT 1,1
REM *** Position cube ***
POSITION OBJECT 1,25,0,100
REM *** Rotate cube continuously ***
DO

TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

Activity 32.2

To change shape requires the line

MAKE OBJECT CUBE 1,40

to be replaced by each of the following in turn:

MAKE OBJECT BOX 1, 10,20,30
MAKE OBJECT CYLINDER 1, 15
MAKE OBJECT CONE 1, 15
MAKE OBJECT SPHERE 1, 10

The cube and box repeat the texture image on each side;
other shapes show the image only once.

Activity 32.3

No solution required.

Activity 32.4

The texture seems a little more blurred when using
mipmaps, but the texturing process seems to be carried out
at a faster frame rate.

Activity 32.5

No solution required.

Activity 32.6

No solution required.

Activity 32.7
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture image ***
LOAD IMAGE "seamlesseye.bmp",1
REM *** Create and texture sphere ***
MAKE OBJECT SPHERE 1, 40,40,40
TEXTURE OBJECT 1,1
DO

TURN OBJECT LEFT 1, 1.0
LOOP
END

Activity 32.8

By changing the coordinates of the bottom right corner of
the video to 10,10, the video itself is only 11 pixels by 11
pixels, and, when expanded to cover the surface of the
cube becomes indistinct and blocky.

By changing the corner values from 10,10 to 1000,1000
we make the video 1001 pixels by 1001 pixels (actually
larger than the original recording). Since we cannot add
any detail which was not in the original recording, this
size does not achieve any better results than a lower
resolution (say 640 by 640), but does increase the load on
the video hardware and slows down the whole process.

Activity 32.9

No solution required.

Activity 32.10

No solution required.

Activity 32.11
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load image ***
LOAD IMAGE "eyecol.bmp",1
REM *** Create and texture plain object ***
MAKE OBJECT PLAIN 1,200,200
TEXTURE OBJECT 1,1
REM *** Offset texture on image***
SCROLL OBJECT TEXTURE 1,0.1,0.0
WAIT KEY
SCROLL OBJECT TEXTURE 1,0.1,0.0
REM *** End program ***
WAIT KEY
END

We can see from the results produced by the program that
the scroll effect is cumulative, with the image moving
another step to the left when the second SCROLL
OBJECT TEXTURE statement is applied.

Activity 32.12
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load image ***
LOAD IMAGE "eyecol.bmp",1
REM *** Create and texture plain object ***
MAKE OBJECT PLAIN 1,200,200
TEXTURE OBJECT 1,1
REM *** Offset texture placed on image***
DO

SCROLL OBJECT TEXTURE 1,0.1,0.0
LOOP
REM *** End program ***
WAIT KEY
END

The image scrolls vertically.

REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load image ***
LOAD IMAGE "eyecol.bmp",1

DarkBASIC Pro: Texturing 831

REM *** Create and texture plain object ***
MAKE OBJECT PLAIN 1,200,200
TEXTURE OBJECT 1,1
REM *** Offset texture placed on image***
DO

SCROLL OBJECT TEXTURE 1,0.0,0.1
LOOP
REM *** End program ***
WAIT KEY
END

Activity 32.13
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make and position spheres ***
LOAD IMAGE "eyecol.bmp",1
MAKE OBJECT SPHERE 1, 40
POSITION OBJECT 1,25,-20,100
MAKE OBJECT SPHERE 2, 40
POSITION OBJECT 2, -25,-20,100
REM *** Texture spheres ***
TEXTURE OBJECT 1,1
TEXTURE OBJECT 2,1
REM *** Offset so eyes are at front ***
SCROLL OBJECT TEXTURE 1, 0.51,0.0
SCROLL OBJECT TEXTURE 2,0.51,0.0
REM *** Make eyes follow mouse ***
DO

x3D = MOUSEX() - SCREEN WIDTH()/2
y3D = -(MOUSEY() - SCREEN HEIGHT()/2)
POINT OBJECT 1, x3D,y3D,-300
POINT OBJECT 2, x3D,y3D,-300

LOOP
REM *** End program ***
WAIT KEY
END

Activity 32.14

No solution required.

Activity 32.15
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture image ***
LOAD IMAGE "DoNot.bmp",2
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100
REM *** Texture cube with image ***
TEXTURE OBJECT 1,2
REM *** Make black areas of texture ***
REM *** transparent ***
SET OBJECT TRANSPARENCY 1,1
REM *** Rotate cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP
REM *** End program ***
END

Any part of the cube which is textured with black
disappears.

Activity 32.16
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Make magenta transparent ***
SET IMAGE COLORKEY 255,0,255
REM *** Load texture images ***

LOAD IMAGE "textureWood.jpg",1
LOAD IMAGE "DoNotMag.bmp",2
REM *** Create and texture cube ***

MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1
REM *** Add secondary texture ***
SET DETAIL MAPPING ON 1,2
REM *** Position cube ***
POSITION OBJECT 1,25,0,100
REM *** Rotate cube ***
DO PITCH OBJECT DOWN 1, 1.0

TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

Activity 32.17
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Set magenta as transparent ***
SET IMAGE COLORKEY 255,0,255
REM *** Load texture images ***
LOAD IMAGE "textureWood.jpg",1
LOAD IMAGE "DoNotMag.bmp",2
LOAD IMAGE "FlagMag.bmp",3
REM *** Create and texture cube ***
MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1
REM *** Add text as secondary texture ***
SET DETAIL MAPPING ON 1,2
REM *** Try using another texture ***
SET DETAIL MAPPING ON 1,3
REM *** Position cube ***
POSITION OBJECT 1,25,0,100
REM *** Rotate cube ***
DO PITCH OBJECT DOWN 1, 1.0

TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

Only the wood and flag textures show; the text "DO NOT
OPEN" is missing.

Activity 32.18
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Set magenta as transparent ***
SET IMAGE COLORKEY 255,0,255
REM *** Load texture images ***
LOAD IMAGE "textureWood.jpg",1
LOAD IMAGE "DoNotMag.bmp",2
REM *** Create and texture cube ***
MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1
REM *** Tile cube's texture ***
SCALE OBJECT TEXTURE 1,2,2
REM *** Add secondary texture ***
SET DETAIL MAPPING ON 1,2
REM *** Position cube ***
POSITION OBJECT 1,25,0,100
REM *** Rotate cube ***
DO PITCH OBJECT DOWN 1, 1.0

TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

The DETAIL MAPPING image is also tiled.

832 DarkBASIC Pro: Texturing

Activity 32.19

No solution required.

Activity 32.20

No solution required.

Activity 32.21
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Seed random number generator ***
RANDOMIZE TIMER()
REM *** Load image ***
LOAD IMAGE "DoNot.bmp",1
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
REM *** Create detail mapping ***
SET DETAIL MAPPING ON 1,1
POSITION OBJECT 1,25,0,100
REM *** Colour cube red ***
COLOR OBJECT 1, RGB(255,0,0)
REM *** Rotate Cube ***
DO

PITCH OBJECT DOWN 1,1.0
TURN OBJECT LEFT 1, 1.0
REM *** 1 in 1000 of going green ***
IF RND(1000) = 500

COLOR OBJECT 1, RGB(0,255,0)
ENDIF

LOOP
REM *** End program ***
END

Activity 32.22

No solution required.

Activity 32.23

No solution required.

Activity 32.24
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
REM *** Load texture images ***
LOAD IMAGE "textureWood.jpg",1
LOAD IMAGE "DoNot.bmp",2
REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
POSITION OBJECT 1,25,0,100
REM *** Texture cube ***
TEXTURE OBJECT 1,1
REM *** Create background plain ***
MAKE OBJECT PLAIN 2,100,100
TEXTURE OBJECT 2, 2
POSITION OBJECT 2,0,0,200
REM *** Start reflective value at 200 ***
reflectivity = 200
REM *** Make cube transparent ***
GHOST OBJECT ON 1,0
REM *** rotate cube ***
DO

PITCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
FADE OBJECT 1,reflectivity
REM *** Reduce reflectivity to zero ***
IF reflectivity > 0

DEC reflectivity
ENDIF

WAIT 10
LOOP
REM *** End program ***
END

The cube fades until it is completely invisible.

Activity 32.25

No solution required.

Activity 32.26
REM *** Set display resolution ***
SET DISPLAY MODE 1280, 1024,32
REM *** Create cube ***
MAKE OBJECT CUBE 1,10
REM *** Texture cube ***
LOAD IMAGE "windmillshaped.tga",1
TEXTURE OBJECT 1,1
REM *** Rotate cube ***
DO
REM *** IF key pressed, ghost ***
IF INKEY$() <> ""

GHOST OBJECT ON 1,3
ENDIF
TURN OBJECT LEFT 1,1

LOOP
REM *** End program ***
END

Activity 32.27

No solution required.

Activity 32.28

No solution required.

Activity 32.29
REM *** Set display resolution ***
SET DISPLAY MODE 1280,1024,32
DrawGallows()
POINT CAMERA -150,10,0
WAIT KEY
END

FUNCTION DrawGallows()
REM *** Set up names ***
REM *** Object names ***
#CONSTANT GroundObj 901
#CONSTANT PlatformObj 902
#CONSTANT VerticalPostObj 903
#CONSTANT HorizontalPostObj 904
#CONSTANT DiagonalPostObj 905
#CONSTANT TopStepObj 906
#CONSTANT MiddleStepObj 907
#CONSTANT BottomStepObj 908
#CONSTANT StepEdgeRightObj 909
#CONSTANT StepEdgeLeftObj 910
REM *** Image names ***
#CONSTANT CobbleImg 901
#CONSTANT PlanksImg 902
#CONSTANT WoodImg 903
REM *** Load texture images ***
LOAD IMAGE "TextureWood.jpg",PlanksImg
LOAD IMAGE "CobbleStones.jpg",CobbleImg
LOAD IMAGE "Wood.jpg",WoodImg
REM *** Create cobbled square ***
MAKE OBJECT PLAIN GroundObj,300,300

DarkBASIC Pro: Texturing 833

TEXTURE OBJECT GroundObj,CobbleImg
SCALE OBJECT TEXTURE GroundObj,30,30
XROTATE OBJECT GroundObj,-90
REM *** Create platform ***
MAKE OBJECT BOX PlatformObj,50,15,50
TEXTURE OBJECT PlatformObj,PlanksImg
SCALE OBJECT TEXTURE PlatformObj,2,2
POSITION OBJECT PlatformObj,-125,7.5,0
REM *** Create vertical post ***
MAKE OBJECT BOX VerticalPostObj,2,30,2
TEXTURE OBJECT VerticalPostObj,WoodImg
POSITION OBJECT VerticalPostObj,
�-147.5,30,0
REM *** Create horizontal post ***
MAKE OBJECT BOX HorizontalPostObj,
�2,15,2
TEXTURE OBJECT HorizontalPostObj,
�WoodImg
ZROTATE OBJECT HorizontalPostObj,90
POSITION OBJECT HorizontalPostObj,
�-139,44,0
REM *** Create diagonal post ***
MAKE OBJECT BOX DiagonalPostObj,1,10,1
TEXTURE OBJECT DiagonalPostObj,WoodImg
ZROTATE OBJECT DiagonalPostObj,-45
POSITION OBJECT DiagonalPostObj,
�-144,40,0
REM *** Make top step ***
MAKE OBJECT BOX TopStepObj,10,0.3,3
TEXTURE OBJECT TopStepObj,WoodImg
POSITION OBJECT TopStepObj,-130,12,-26
REM *** Make middle step ***
CLONE OBJECT MiddleStepObj,TopStepObj
POSITION OBJECT MiddleStepObj,-130,8,-29
REM *** Make bottom step ***
CLONE OBJECT BottomStepObj,TopStepObj
POSITION OBJECT BottomStepObj,-130,4,-32
REM *** Make right step edge***
MAKE OBJECT BOX StepEdgeRightObj,0.3,4,20
TEXTURE OBJECT StepEdgeRightObj,WoodImg
XROTATE OBJECT StepEdgeRightObj,-50
POSITION OBJECT StepEdgeRightObj,
�-125,6,-30
REM *** Make left step edge ***
CLONE OBJECT StepEdgeLeftObj,
�StepEdgeRightObj
POSITION OBJECT StepEdgeLeftObj,
�-135,6,-30

ENDFUNCTION

Activity 32.30

The changes to the cobbled square in the DrawGallows()
function are shown in bold below:

REM *** Create cobbled square ***
MAKE OBJECT PLAIN GroundObj,2000,2000
TEXTURE OBJECT GroundObj,CobbleImg
SCALE OBJECT TEXTURE GroundObj,150,150

Activity 32.31

The sky should now be visible.

Activity 32.32

The sphere's texture is upside down and mirrored.

Activity 32.33

No solution required.

834 DarkBASIC Pro: Texturing

