Hands On DarkBASIC Pro

Volume 2

A Self-Study Guide to Games Programming

Alistair Stewart

Hands On DarkBASIC Pro

Volume 2

A Self-Study Guide to Games Programming

Alistair Stewart

DIGITAL SKILLS
Milton

Barr

Girvan

Ayrshire

KA26 9TY

www.digital-skills.co.uk

Copyright © Alistair Stewart 2006

All rights reserved.

No part of this work may be reproduced or used in any form
without the written permission of the author.

Although every effort has been made to ensure accuracy, the
author and publisher accept neither liability nor responsibility
for any loss or damage arising from the information in this book.

All brand names and product names are trademarks of their respective
companies and have been capitalised throughout the text.

DarkBASIC Professional is produced by The Game Creators Ltd

Printed September 2006

Title . Hands On DarkBASIC Pro Volume 2

ISBN-10 : 1-874107-09-2
ISBN-13 : 978-1-874107-09-5

Other Titles Available:

Hands On DarkBASIC Pro Volume 1
Hands On Pascal

Hands On C++

Hands On Java

Hands On XHTML

TABGLE OF CONTENTS

Chapter 30 3D Conceptsand Terminology
THE 3D WOTIA ...t 744
Introduction 744
The Coordinate System 744
AXes . . . L 744

Planes 745

Points 746
WorldUnits 747

Local Axes 747
Rotation 748
3DVectors 748
Object Terminology, 749
Textures 750

Images with an Alpha Channel 750
Cameras 751

Lights 752
Summary 753
Chapter 31 3D Primitives
3D PriIMItIVES . 756
Introduction 756
CreatingaCube 756
The MAKE OBJECT CUBE Statement 756
Creating Other Primitives 757
The MAKE OBJECT BOX Statement 757

The MAKE OBJECT SPHERE Statement 758

The MAKE OBJECT CYLINDER Statement 759

The MAKE OBJECT CONE Statement 760

The MAKE OBJECT PLAIN Statement 760

The MAKE OBJECT TRIANGLE Statement 761
Positioningan Object 762
The POSITION OBJECT Statement 762

The MOVE OBJECT Statement 764
Rotating Objects - Absolute Rotation. 765
The XROTATE OBJECT Statement 766

The YROTATE OBJECT Statement 767

The ZROTATE OBJECT Statement 767

The ROTATE OBJECT Statement 768

The SET OBJECT ROTATION Statement 769
Rotating Objects - Relative Rotation 769

The PITCH OBJECT Statement 770

The TURN OBJECT Statement 770

The ROLL OBJECT Statement 771
The POINT OBJECT Statement 771
The MOVE OBJECT distance Statement 772
The FIX OBJECT PIVOT Statement 773
ResizingObjects 775
The SCALE OBJECT Statement. 775
Showing and Hiding Objects 776
The HIDE OBJECT Statement 776
The SHOW OBJECT Statement 776
The DELETE OBJECT Statement 777
The DELETE OBJECTS Statement 777
Copyinga3DObject 778
The CLONE OBJECT Statement 778
The INSTANCE OBJECT Statement 779
Retrieving Dataon 3D Objects 779
The OBJECT EXIST Statement 779
The OBJECT POSITION Statement 780
The OBJECT VISIBLE Statement 780
The OBJECT SIZE Statement 781
The OBJECT ANGLE Statement 781
Controlling an Object's Rotation Using the Mouse 782
Wireframeand Culling 783
The SET OBJECT WIREFRAME Statement 783
The SET OBJECT CULL Statement 784
Storage Methods Lo 785
The SET GLOBAL OBJECT CREATION Statement 785
Summary . ..o 786
Merging Primitives ... 788
Introduction 788
The Statements L o 788
The PERFORM CSG UNION Statement 788
The PERFORM CSG DIFFERENCE Statement 790
The PERFORM CSG INTERSECTION Statement 790
Summary 79
SOIULIONS. ..o 792
Chapter 32 Texturing
AdAING TEXEUIE ... 798
Introduction 798
Loadinga Texturelmage 798
Using the Imageasa Texture 798
The TEXTURE OBJECT Statement 798
Mipmaps 799

The LOAD IMAGE StatementAgain 800

Tiling 801

The SCALE OBJECT TEXTURE Statement 802
Seamless Tiling 804
Video Texture 805

The PLAY ANIMATION TO IMAGE Statement 805
Other Texture Effects 807

The SET OBJECT TEXTURE Statement 807

The SCROLL OBJECT TEXTURE Statement 808

The SET OBJECT TRANSPARENCY Statement 810

The SET DETAIL MAPPING ON Statement 811

The SET OBJECT FILTER Statement 813
Summary 814

Other Visual EffECtSc..eiiiiiiiiiei e 815
Introduction 815
Changing Colour and Transparency 815

The COLOR OBJECT Statement 815

The GHOST OBJECT ON Statement 816

The GHOST OBJECT OFF Statement 817

The FADE OBJECT Statement 817
Summary 819

Images with an Alpha Channel ... 820
Introduction 820
Using Images with an Alpha Channel 820
Summary 821

Creating @ Complex 3D Shapecccovviiiiiieiiccee e 822
Introduction L 822
Designingthe Castle 822

Gathering the Components 823
Creatingthe Code 823

TheCode 824
Sky Spheres 828
Summary 830

Yo 11 o) 13RS 831
Chapter 33 Cameras
CaMEIa BaSICS ...uueiiiiiiie ettt a e 836
Introductiono 836

Positioningthe Camera 836

The POSITION CAMERA Statement 836

The MOVE CAMERA Statement. 837
Changing the Viewpoint 838

The POINT CAMERA Statement 838

The ROTATE CAMERA Statement 838

The SET CAMERA ROTATION Statement 840

The XROTATE CAMERA Statement 840

The YROTATE CAMERA Statement
The ZROTATE CAMERA Statement
The PITCH CAMERA Statement
The TURN CAMERA Statement
The ROLL CAMERA Statement
Retrieving CameraData
The CAMERA POSITION Statement
The CAMERA ANGLE Statement
Modifying Camera Characteristics
The SET CAMERA VIEW Statement
The SET CAMERA ASPECT Statement
The SET CAMERA FOV Statement
The SET CAMERA RANGE Statement
Summary
Controlling Camera MovemMENLt..........cccuvviiiieie e
Introduction
Automatic Camera Placement
The AUTOCAM Statement
Followingthe Action
The SET CAMERA TO FOLLOW Statement
Giving the Player Control of the Camera
The CONTROL CAMERA USING ARROWKEYS Statement . .
The AUTOMATIC CAMERA COLLISION Statement
Controlling the Camera withthe Mouse
Summary
MUIEIPIE CAMEIASceeeeiiiieeee et ee e e e
Introduction
Using Additional Cameras
The MAKE CAMERA Statement
The COLOR BACKDROP Statement
The BACKDROP Statement
The SET CURRENT CAMERA Statement.
The DELETE CAMERA Statement
Switching Between Cameras
Multiple CameraQutput
The CLEAR CAMERA VIEW Statement
Summary
Advanced Camera Techniques...........ccccooiii
Introduction
The Statements
The SET CAMERA TO IMAGE Statement.
The SET CAMERA TO OBJECT ORIENTATION Statement . .
The SET OBJECT TO CAMERA ORIENTATION Statement . .
The LOCK OBJECT Statement
The SET VECTOR3 TO CAMERA POSITION Statement
The SET VECTOR3 TO CAMERA ROTATION Statement

Summary 876

RS T0] U110] o TSRS 878
Chapter 34 Lighting
LIGNEING e 886
Introduction 886
Typesof Lighting 886
Ambient Lighting 886
Point Lighting, 886
SpotLighting 886
Directional Lighting 886
Lightingin DarkBASICPro 887
The HIDE LIGHT Statement 887
The SHOW LIGHT Statement 888
The SET AMBIENT LIGHT Statement 888
The COLOR AMBIENT LIGHT Statement 889
The MAKE LIGHT Statement 889
The DELETE LIGHT Statement 890
The COLOR LIGHT Statement 890
The POSITION LIGHT Statement 891
The SET LIGHT RANGE Statement 891
The SET SPOT LIGHT Statement 892
The SET DIRECTIONAL LIGHT Statement 892
The SET POINT LIGHT Statement 893
The POINT LIGHT Statement 893
The ROTATE LIGHT Statement 895
The SET LIGHT TO OBJECT POSITION Statement 895
The SET LIGHT TO OBJECT ORIENTATION Statement 897
Retrieving LightData 898
The LIGHT EXIST Statement 898
The LIGHT VISIBLE Statement 899
The LIGHT RANGE Statement 899
The LIGHT TYPE Statement 899
The LIGHT POSITION Statement 900
The LIGHT DIRECTION Statement 900
Fog e 901
The FOG Statement 901
The FOG COLOR Statement 902
The FOG DISTANCE Statement. 902
The SET OBJECT FOG Statement 903
Summary 904

ST o] (011 o 1T 907

Chapter 35 Meshesand Limbs

IMESINES ...ttt s e e e eeaaeaseananeraannnnne 912
Introduction 912
HandlingMeshes 912

The MAKE MESH FROM OBJECT Statement 912
The SAVE MESH Statement. 913
The LOAD MESH Statement 914
The MAKE OBJECT Statement 914
The DELETE MESH Statement 915
The MESH EXIST Statement 915
Summary 916

(T3 0] o X PR PPPPPPPPPPPPRPPPNt 917
Introduction 917
Getting Started 917

The ADD LIMB Statement 917
The MAKE OBJECT FROM LIMB Statement 919
The OFFSET LIMB Statement 920
The ROTATE LIMB Statement 920
The SCALE LIMB Statement 922
The COLOR LIMB Statement 922
The TEXTURE LIMB Statement 923
The SCALE LIMB TEXTURE Statement. 925
The SCROLL LIMB TEXTURE Statement 927
The HIDE LIMB Statement 927
The SHOW LIMB Statement 928
The REMOVE LIMB Statement 928
The LINKLIMB Statement 928
The CHANGE MESH Statement 931
The GLUE OBJECT TO LIMB Statement 931
The UNGLUE OBJECT Statement 934
The SET LIMB SMOOTHING Statement 934
CreatingDoors 935
RetrievingLimbData L. 936
The LIMB EXIST Statement 936
The LIMB VISIBLE Statement 937
The LIMB OFFSET Statement 937
The LIMB SCALE Statement 938
The LIMB ANGLE Statement 939
The LIMB POSITION Statement 939
The LIMB DIRECTION Statement 940
The PERFORM CHECKLIST FOR OBJECT LIMBS Statement . 944
The LIMB NAME$ Statement 945
The LIMB TEXTURE Statement 946
The LIMB TEXTURE NAME Statement 946

The CHECK LIMB LINK Statement 947

Saving a Model in DBO Format 947

Introduction Lo 947

The DBO FileFormat 948
Creating an Elevator Model 948

The SAVE OBJECT Statement 949

The LOAD OBJECT Statement 950
Summary 951
SOIULIONS ...ttt s 953
Chapter 36 Importing 3D Objects
IMPOrting 3D ObJECES.eeeiiiiee e 962
Introduction 962
File Formatso 963
Statements for Loading and Using 3D Objects 963
The LOAD OBJECT Statement Again 963

The PLAY OBJECT Statement 965

The LOOP OBJECT Statement 966

The TOTAL OBJECT FRAMES Statement 966
Movingthe Alien 967

The SET OBJECT SPEED Statement 967

The STOP OBJECT Statement 968

The SET OBJECT FRAME Statement 968

The SET OBJECT INTERPOLATION Statement 969

The APPEND OBJECT Statement. 970
Retrieving Animation Object Information 971
The OBJECT PLAYING Statement 971

The OBJECT LOOPING Statement 971

The OBJECT FRAME Statement 972

The OBJECT SPEED Statement 972

The OBJECT INTERPOLATION Statement 972

The OBJECT SIZE Statement 973

Limbs 974
Summary 975
SOIULIONSttt aaan 977
Chapter 37 Screen Control
USEI CONTION ..ottt se e sasssesesssssnnnnnnes 980
Introduction 980
Selectingan Object. L. 980
The OBJECT SCREEN Statement 982

The PICK OBJECT Statement 983

The GET PICK DISTANCE Statement. 984

The PICK VECTOR Statement 985

The PICK SCREEN Statement 986

The OBJECT IN SCREEN Statement 987

Selecting Objects usingthe Mouse 988
Summary 990

RS T0] U1 1T 1= PSR 991
Chapter 38 Solitaire
Solitaire - The Board Game...........ccoocueiiiiieiiiciiee e 994
Introductiono 994
The Equipment oL 994

The Aim 994
TheRules 994
Creating a Computer Version of the Game 994
UserControls 994

Game Responses 995
Screenlayout Lo 995
MediaUsed 995

Data Structures Lo 996

Adding SetUpScreen() 999

Adding SetUpGame() 1000

Adding CreateBoard() 1001

Adding CreatelnternalBoard() 1001

Adding CreateMarbles() 1002

Adding CreateSelector() 1002

Adding SetUpHelp() L. 1003

Adding GetPlayerMove() L. 1004

Adding MoveSelector() L. 1006

Adding SelectMarble()o 1007

Adding SelectPit() oL 1008

Adding IsValidMove() oL, 1008

Adding MoveMarble() 1008

Adding SelectHelpPage() 1009
UsingtheMouse 1009
Introduction 1009
Updating the Program 1010
Suggested Enhancementso 1013

I To] 11 1o 1< SRR 1015
Chapter 39 Advanced Lighting and Texturing
Advanced Lighting and TeXturing..........ccooueiiiiiiiieie e 1028
Introduction 1028
Surface Reflection 1028
The SET OBJECT AMBIENT Statement 1029

The SET OBJECT DIFFUSE Statement 1030

The SET OBJECT SPECULAR Statement 1030

The SET OBJECT SPECULAR POWER Statement 1031

The SET OBJECT EMISSIVE Statement 1031
The SET OBJECT LIGHT Statement 1034
Mappings 1035
The SET LIGHT MAPPING ON Statement 1035
The SET BUMP MAPPING ON Statement 1038
The SET SPHERE MAPPING ON Statement 1039
The SET BLEND MAPPING ON Statement 1041
The SET CUBE MAPPING ON Statement. 1042
The SET ALPHA MAPPING ON Statement 1044
Shadows 1045
The SET SHADOW SHADING ON Statement. 1045
The SET SHADOW SHADING OFF Statement 1048
The SET GLOBAL SHADOWS Statement. 1048
The SET GLOBAL SHADOW COLOR Statement 1050
The SET GLOBAL SHADOW SHADES Statement 1050
Positioning Shadows oo 1051
The SET SHADOW POSITION Statement 1051
ShadowsandModels 1052
Other Shading Methods 1054
The SET CARTOON SHADING ON Statement 1054
The SET RAINBOW SHADING ON Statement 1056
The SET REFLECTION SHADING ON Statement 1057
The SET SHADING OFF Statement 1058
Summary 1058
SOIULIONS. ..t e e e e e a e e e e 1061
Chapter 40 Collisions
ODbJECt COIlISIONS ... s 1068
Introduction 1068
ObjectCollision 1068
The OBJECT HIT Statement 1069
The OBJECT COLLISION Statement 1070
The SET OBJECT COLLISION Statement 1070
The SET GLOBAL COLLISION Statement 1071
How Collision Detection Works 1071
The SHOW OBJECT BOUNDS Statement 1072
The HIDE OBJECT BOUNDS statement 1072
Modifying Collision Detection 1074
The SET OBJECT COLLISION TO SPHERES Statement . . . 1074
The SET OBJECT RADIUS Statement 1074
The OBJECT COLLISION RADIUS Statement 1075
The OBJECT COLLISION CENTER Statement 1075
The SET OBJECT COLLISION TO BOXES Statement 1076

The SET OBJECT COLLISION TO POLYGONS Statement . . 1076

The MAKE OBJECT COLLISION BOX Statement 1077

The GET OBJECT COLLISION Statement 1080
The DELETE OBJECT COLLISION BOX Statement 1082
The AUTOMATIC OBJECT COLLISION Statement 1082
The INTERSECT OBJECT Statement 1083
Summary 1085
StatiC COllISIONSvvuiiiiiiiiiiii s 1087
Introduction 1087
Creating and Using Static CollisionBoxes 1087
The MAKE STATIC COLLISION BOX Statement 1087
The GET STATIC COLLISION HIT Statement 1087
The GET STATIC COLLISION Statement 1089
The STATIC LINE OF SIGHT Statement 1093
The STATIC LINE OF SIGHT Coordinates Statement 1095
Static Collision Boxes andthe Camera 1096
Summary 1096
SOIULIONS. ..ttt nan 1098
Chapter 41 Particles
PariCIES. ..ot aeananes 1102
Introduction 1102
Creating Particles oL 1102
The MAKE PARTICLES Statement 1102
The HIDE PARTICLES Statement 1103
The SHOW PARTICLES Statement 1104
The DELETE PARTICLES Statement 1104
The POSITION PARTICLES Statement 1104
The POSITION PARTICLE EMISSIONS Statement 1105
The ROTATE PARTICLES Statement 1106
The COLOR PARTICLES Statement 1107
The SET PARTICLE EMISSIONS Statement 1108
The SET PARTICLE VELOCITY Statement 1109
The SET PARTICLE GRAVITY Statement 1110
The SET PARTICLE CHAOS Statement 1110
The SET PARTICLE SPEED Statement 1111
The SET PARTICLE FLOOR Statement. 1112
The SET PARTICLE LIFE Statement 1113
The GHOST PARTICLES ON Statement 1113
The GHOST PARTICLES OFF Statement. 1114
Retrieving Data on a Particles Object 1114
The PARTICLES EXIST Statement 1114
The PARTICLES POSITION Statement 1115
Particles Statements thatuse Vectors 1116

The SET VECTOR3 TO PARTICLES POSITION Statement . . 1116
The SET VECTOR3 TO PARTICLES ROTATION Statement . . 1116

Summary 1116

Other Types of PartiCles...........uuuviiiiiiiiieeeee et 1118
Introduction 1118
The Statements o 1118

The MAKE SNOW PARTICLES Statement 1118
The MAKE FIRE PARTICLES Statement 1119
Summary 1120

Examples of Using PartiClesoevvviiiiiiiiiieiiiiiiiieieeeeeeeveeeeeeveeveveveaaees 1121
Introduction 1121
ARomanCandle 1121
ASpaceship 1122
ADungeonTorch. 1122

RS T0] U1 1T o 1SR 1124

Chapter 42 The Elevators Game

EIEVALOIS ...ttt tn e e e rnnnnnne 1128

Introduction 1128
The Equipment o L 1128
The Aim 1128
TheRules 1128

Creating a Computer versionofthe Game 1128
UserControls 1128
Game Responses 1128
Screenlayout Lo 1128
TheBoardDesign 1129
TheMediaUsed 1129
Data Structures 1130
Game logic 1131
Adding SetUpGame() 1132
Adding InitialiseData() 1134
Adding InitialiseLifts() 1134
Adding InitialiseBoard() L. 1135
Adding InitialiseVisuals() 1136
Loading Models and Texture Files 1136
Adding LoadBoard() oL 1137
Adding AddElevators()o 1137
Adding LoadPlayerCharacter() 1138
Adding LoadDice() Lo 1138
Adding PositionCameras() 1138
AddingRollDice() 1142
Adding MovePlayer() 1143
Adding UseElevator() 1146
Adding MovePlayerToElevator() 1147
Adding TurPlayer() 1148

Adding MoveOntoPlatform() 1148

Adding MoveElevator() L 1148

Adding MoveOffPlatform() 1149

Adding ReturnElevator() L. 1150

Adding RepositionCamera() 1150

Fixing the Shortcomings 1151
Fixing RepositionCamera() 1151

Fixing MovePlayer() 1152

Fixing UseElevator() 1153

Fixing MovePlayerToElevator() 1153

Fixing MoveElevator() 1153

Adding EndGame() oo 1154

Game Review 1154
SOIULIONS. ..t 1155
Chapter 43 Handling BSP Models
Binary Space Partitioning..........coccuiiiiiiiie i 1164
Introduction 1164
CreatingaBSPFile 1165
UsingBSP Files, 1165
The LOAD BSP Statement 1165

The SET BSP CAMERA COLLISION Statement 1167

The SET BSP OBJECT COLLISION Statement 1167

The SET BSP CAMERA COLLISION RADIUS Statement . . . 1169
The SET BSP OBJECT COLLISION RADIUS Statement 1169
The SET BSP COLLISION HEIGHT ADJUSTMENT Statement 1170

The SET BSP COLLISION THRESHOLD Statement 1171

The PROCESS BSP COLLISION Statement 1171

The SET BSP COLLISION OFF Statement 1171

The BSP COLLISION HIT Statement 1172

The BSP COLLISION Statement 1172

The SET BSP CAMERA Statement 1173

The DELETE BSP Statement 1173

The SET BSP MULTITEXTURING Statement 1173
Summary 1173
USING @ BSP MaAPcoiiiiiiiei e 1175
Introduction 1175
The Program 1175
SOIULIONS . ..ttt nnnn 1178
Chapter 44 Creating Terrain
Creating TeITaAINeii e 1180
Introduction 1180
Documented Terrain Statements 1180

The MAKE TERRAIN Statement 1180

The DELETE TERRAIN Statement 1181

The POSITION TERRAIN Statement 1182
The TERRAIN POSITION Statement 1183
The TEXTURE TERRAIN Statement 1183
The GET TERRAIN HEIGHT Statement 1184
The GET TOTAL TERRAIN HEIGHT Statement 1186
The Advanced Terrain Statements 1186
The MAKE OBJECT TERRAIN Statement 1186
The SET TERRAIN HEIGHTMAP Statement 1187
The SET TERRAIN SCALE Statement 1187
The SET TERRAIN TEXTURE Statement 1188
The BUILD TERRAIN Statement 1188
The SET TERRAIN TILING Statement 1189
The SET TERRAIN LIGHT Statement 1190
The SET TERRAIN SPLIT Statement 1191
The GET TERRAIN GROUND HEIGHT Statement 1191
The GET TERRAIN SIZE Statement 1193
The SAVE TERRAIN Statement 1193
The LOAD TERRAIN Statement 1194
Terrainsas Objects 1195
Summary 1195
Documented Statementso 1195
Undocumented (Advanced Terrain) Statements 1196
Terrain Project........coooo oo 1197
Introductiono 1197
CreatingtheGame 1197
Constants and Global Variables 1198
Adding StartUpGame() 1198
Adding PositionCamera() 1199
Adding CreateScene() 1199
Adding LoadTerrain(), 1199
Adding CreateSkyBox() 1200
AddingLoadOcean() 1200
Adding PlaceOrb() L. 1201
Adding StartGame() 1202
Adding ControlPlayer() 1202
AddingEndGame() 1203
Adding Testing Features 1204

0 To] 11 1o 1< USSR 1206
Chapter 45 Using Matrices
= (o = RPN 1212
Introduction 1212
CreatingaMatrix oL 1213

The MAKE MATRIX Statement 1213

The RANDOMIZE MATRIX Statement 1214

The UPDATE MATRIX Statement 1214
The SET MATRIX HEIGHT Statement 1215
The GET MATRIX HEIGHT Statement 1217
The GET GROUND HEIGHT Statement. 1218
The SET MATRIX WIREFRAME Statement 1219
The MATRIX WIREFRAME STATE Statement 1220
Adding TexturetotheMatrix 1220
The PREPARE MATRIX TEXTURE Statement 1220
The FILL MATRIX Statement 1222
The SET MATRIX TILE Statement 1223
The SET TEXTURE TRIM Statement 1226
The SHIFT MATRIX Statement 1227
The MATRIX TILE COUNT Statement 1228
The MATRIX TILES EXIST Statement 1228
Positioning the Matrixin3D Space 1229
The POSITION MATRIX Statement 1229
The MATRIX POSITION Statement 1230
Matrix Transparency, 1231
The GHOST MATRIX ON Statement 1231
The GHOST MATRIX OFF Statement 1232
The SET MATRIX PRIORITY Statement 1232
Lightingthe Matrix 1234
The SET MATRIX NORMAL Statement 1234
The SET MATRIX Statement 1235
The MATRIX EXIST Statement 1237
Summary 1238
S To] 11 1o 1SS 1240
Chapter 46 Manipulating Vertices
Manipulating VErtICESovvviiiiiiieiiieeeeeeee e eeeeenees 1246
Introductiono 1246
The Statements oL 1246
The LOCK VERTEXDATA FOR MESH Statement 1246
The GET VERTEXDATA VERTEX COUNT Statement 1247
The GET VERTEXDATA POSITION Statement 1248
The SET VERTEXDATA POSITION Statement 1250
The UNLOCK VERTEXDATA Statement 1250
The LOCK VERTEXDATA FOR LIMB Statement 1251
The GET VERTEXDATA NORMALS Statement 1253
The SET VERTEXDATA NORMALS Statement 1254
The GET VERTEXDATA Statement 1255
The SET VERTEXDATA UV Statement 1256
The SET VERTEXDATA DIFFUSE Statement 1257

The GET VERTEXDATA DIFFUSE Statement 1258

Handling More Complex Shapes 1258

The ADD MESH TO VERTEXDATA Statement 1265
More About the Vertex Data Buffer's Structure 1266
The GET VERTEXDATA INDEX COUNT Statement 1267
The GET INDEXDATA Statement 1268
The SET INDEXDATA Statement 1270
The DELETE MESH FROM VERTEXDATA Statement 1271
Summary 1272
Yo 111 1SRRI 1274
Chapter 47 Accessing Memory
ACCESSING MEIMOIY ...t e e 1282
Introduction 1282
Pointers 1282
Creating Pointers in DarkBASICPro 1283
Assigninga Valuetoa Pointer 1283
The MAKE MEMBLOCK Statement 1283
The GET MEMBLOCK PTR Statement 1283
UsingaPointer. 1284
Using a Pointer to Return Values from a Function 1285
Larger Memory Blocks L. 1286
The WRITE MEMBLOCK Statement 1286
The MEMBLOCK Statement 1287
The GET MEMBLOCK SIZE Statement 1288
The DELETE MEMBLOCK Statement 1288
The MEMBLOCK EXIST Statement 1288
The COPY MEMBLOCK Statement 1289
Strings and Memory Blocks oL 1290
The WRITE MEMBLOCK (to file) Statement 1292
The MAKE FILE FROM MEMBLOCK Statement 1294
The READ MEMBLOCK (from file) Statement 1294
The MAKE MEMBLOCK FROM FILE Statement 1296
Adding a New Top Scoretoour List 1296
Summary 1297
Media Contents and Memory BIOCKSccccciiiiiiiiiic e, 1299
Introduction 1299
Bitmaps and Memory Blocks 1299
The MAKE MEMBLOCK FROM BITMAP Statement 1299
The MAKE BITMAP FROM MEMBLOCK Statement 1301
Mapping a Screen Position to a Memory Block Location 1302
Mapping the Mouse Position to a Memory Block Location . . . 1303
Images and Memory Blocks oL 1304
The MAKE MEMBLOCK FROM IMAGE Statement 1304
The MAKE IMAGE FROM MEMBLOCK Statement 1304

Sounds and MemoryBlocks 1305

The MAKE MEMBLOCK FROM SOUND Statement 1305

The MAKE SOUND FROM MEMBLOCK Statement 1307

3D Objects and Memory Blocks 1308
The MAKE MEMBLOCK FROM MESH Statement 1308
The MAKE MESH FROM MEMBLOCK Statement 1311
The CHANGE MESH FROM MEMBLOCK Statement. 1312
Summary L 1313
SOIULIONS . .ottt 1314
Chapter 48 Open Dynamics Engine
USING ODE ...ttt e et e e nbee e e 1318
Introduction 1318
Basic ODE Statements 1318
The ODE CREATE DYNAMIC BOX Statement 1318
The ODE START Statement 1319
The ODE END Statement 1319
The ODE UPDATE Statement 1319
The ODE SET WORLD GRAVITY Statement 1320
The ODE CREATE STATIC BOX Statement 1321
The ODE CREATE DYNAMIC SPHERE Statement 1322
The ODE CREATE DYNAMIC CYLINDER Statement 1322
The ODE CREATE DYNAMIC TRIANGLE MESH Statement . . 1324
The ODESETWORLDSTEP 1325
The ODE CREATE STATIC TRIANGLE MESH Statement . . . 1325
The ODE SET WORLD ERP Statement 1326
The ODE SET WORLD CFM Statement. 1327
The ODE SET CONTACT FDIR1 Statement 1328
The ODE SET LINEAR VELOCITY Statement 1328
The ODE SET ANGULAR VELOCITY Statement 1331
The ODE SET BODY ROTATION Statement 1332
The ODE SET BODY MASS Statement 1332
The ODE DESTROY OBJECT Statement 1334
The ODE GET BODY LINEAR VELOCITY Statement 1335
The ODE GET BODY HEIGHT Statement. 1335
The ODE COLLISION MESSAGE EXISTS Statement 1336
The ODE COLLISION GET MESSAGE Statement 1336
The ODE GET OBJECT Statement 1336
The ODE GET OBJECT VELOCITY Statement 1337
The ODE GET OBJECT ANGULAR VELOCITY Statement . . . 1338
The ODE ADD FORCE Statement. 1338
Surface Contact Statements 1340
Summary 1343

RS0 (811 o 1T 1345

Chapter 49 Vectorsand Matrices

3D VECIOIS. ..ttt nan 1350
Introduction 1350
A Mathematical Description of 3D Vectors 1350
What is a 3D Vector in DarkBASIC Pro? 1351
Why dowe need 3D Vectors? 1351

3D Vector Statementso 1351
The MAKE VECTORS3 Statement 1351
The SET VECTORS3 Statement 1352
Retrieving Data froma 3D Vector 1352
The DELETE VECTORS3 Statement 1353
The COPY VECTORS3 Statement 1353
The MULTIPLY VECTORS3 Statement 1354
The SCALE VECTORS3 Statement 1354
The DIVIDE VECTORS Statement. 1355
The LENGTH VECTOR3 Statement 1355
The SQUARED LENGTH VECTORS Statement 1356
The ADD VECTORS3 Statement 1356
The SUBTRACT VECTORS3 Statement 1357
The DOT PRODUCT VECTORS3 Statement 1357
The NORMALIZE VECTORS3 Statement 1358
The IS EQUAL VECTORS3 Statement 1359
The MAXIMIZE VECTORS Statement 1359
The MINIMIZE VECTORS Statement 1360
The CROSS PRODUCT VECTORS Statement 1360
Summary 1361
AD VEBCIOIS. ...ttt e e e e e e 1363
Introduction 1363
MALFICES ...ttt e e e tesebasebebebnbarnrnrnrnrnne 1365
Introduction 1365
Matrix Statementso o o 0oL 1365
The MAKE MATRIX4 Statement 1365
The SET IDENTITY MATRIX4 Statement 1366
The IS IDENTITY MATRIX4 Statement 1366
Other Matrix Assignment Statements 1367
The COPY MATRIX4 Statement 1367
The IS EQUAL MATRIX4 Statement 1367
The ADD MATRIX4 Statement 1368
The SUBTRACT MATRIX4 Statement. 1368
The DIVIDE MATRIX4 Statement 1368
The MULTIPLY MATRIX4 Statement 1369
The INVERSE MATRIX4 Statement 1370
The SCALE MATRIX4 Statement 1370
The TRANSLATE MATRIX4 Statement 1371

The ROTATE MATRIX4 Statement 1371

The TRANSPOSE MATRIX4 Statement 1372

The DELETE MATRIX4 Statement 1372

Summary 1372

SOIULIONS. .. e e e a e e e e anae 1374
Chapter 50 Shaders
Shaders and FX FIles.......cooiiiiiiii e 1376
Introduction 1376

Vertex Shader 1376

Pixel Shader 1376

FXFiles. e 1377

Graphics Card Check Statements 1377

The GET MAXIMUM VERTEX SHADER VERSION Statement . 1377
The GET MAXIMUM PIXEL SHADER VERSION Statement . . 1377

FX Statements L. 1378
The LOAD EFFECT Statement 1378

The EFFECT EXIST Statement 1378

The PERFORM CHECKLIST FOR EFFECT ERRORS Statement . . . 1379

The SET OBJECT EFFECT Statement 1379

The SET EFFECT ON Statement 1380

The DELETE EFFECT Statement 1381

The SET LIMB EFFECT Statement 1381

The PERFORM CHECKLIST FOR EFFECT VALUES Statement1382

The SET EFFECT CONSTANT Statement 1383

The SET EFFECT TECHNIQUE Statement 1383

The SET EFFECT TRANSPOSE Statement 1384

Vertex Shader Statements 1383
The CREATE VERTEX SHADER FROM FILE Statement . . . 1383

The SET VERTEX SHADER ON Statement 1385

The SET VERTEX SHADER OFF Statement 1385

The DELETE VERTEX SHADER Statement 1385

Other Vertex Shader Statements 1386

Pixel Shader Statements 1386
Summary 1386
FXFiles 1386
ShaderFiles 1387
SOIULIONS ...t e e e e a e e e e e 1388
Chapter 51 Network Programming
NEetWOrked GamES.........oooviiiiiiieiiiieeeeeee ettt aeeeeeaeaes 1390
Introduction 1390
Hardware Requirements 1390
Getting Started 1390

The PERFORM CHECKLIST FOR NET CONNECTIONS Statement . 1391

TCP/IIP . . 1392

The SET NET CONNECTION Statement 1392
The CREATE NET GAME Statement 1394
Writing Code for the Client Machine 1395
The PERFORM CHECKLIST FOR NET SESSIONS Statement 1395
The JOIN NET GAME Statement 1396
The PERFORM CHECKLIST FOR NET PLAYERS Statement . 1397
Using a Single Machine as Both Host and Client 1498
Combining the Host/Client Requirements 1499
Communicating 1401
The SEND NET MESSAGE Statement (Version1) 1401
The GET NET MESSAGE Statement 1401
The NET MESSAGE EXISTS Statement 1402
The NET MESSAGE Statement (Version1) 1402
The NET MESSAGE PLAYER FROM Statement 1403
The NET MESSAGE PLAYER TO Statement 1403
The SEND NET MESSAGE Statement (Version2) 1404
The NET MESSAGE Statement (Version2) 1405
The NET MESSAGE TYPE Statement 1406
The NET BUFFER SIZE Statement 1408
SessionDynamics Lo o 1409
The NET PLAYER CREATED Statement 1409
The NET PLAYER DESTROYED Statement 1409
The NET GAME NOW HOSTING Statement 1411
The FREE NET GAME Statement 1411
The CREATE NET PLAYER Statement 1412
The FREE NET PLAYER Statement. 1412
The NET GAME EXISTS Statement 1413
The NET GAME LOST Statement 1413
Summary 1413
A NEtWOrked GamEueeiiiiiee it e e e e eeae e 1415
Introduction 1415
A Non-Networked Version 1415
ProgramData 1415
Gamelogic 1416
Adding SetUpPlayerDetails() 1417
Adding SetUpScreen() 1417
Adding SetUpBoard() 1417
Adding GetMove()o 1417
Adding GetMyMove()o 1418
Adding GetSquare() L oo 1418
AddingInRange() 1418
Adding GetOpponentsMove() 1419
Adding CheckForWin() 1419
Adding the Other Search Routines 1420

AddingEndGame() 1422

Networkingthe Game 1423

Updating the mainsection 1423

Adding WaitForSecondPlayer() 1423

Adding NumberOfPlayers() 1423
Modifying the Call to SetUpPlayerDetails() 1424
Modifying GetMyMove() 1424
Modifying GetOpponentsMove() 1424
Modifying EndGame() 1425

A Complete Listing L. 1425
Yo 11 1o 1< USSR 1431
Chapter 52 Using File Transfer Protocol
Internet File Transfers ... 1436
Introduction 1436
The Instructions Lo 1436
The FTP CONNECT Statement 1436

The GET FTP FAILURE Statement 1436

The GET FTP ERRORS Statement 1437

The GET FTP STATUS Statement 1437

The FTP SET DIR Statement 1438

The GET FTP DIR$ Statement 1438

The FTP FIND FIRST Statement 1438

The FTP FIND NEXT Statement 1439

The GET FTP FILE TYPE Statement 1439

The GET FTP FILE NAMES$ Statement 1439

The GET FTP FILE SIZE Statement 1439

The FTP DISCONNECT Statement 1440

The FTP GET FILE Statement 1440

The FTP PROCEED Statement 1441

The GET FTP PROGRESS Statement 1442

The FTP TERMINATE Statement 1442

The FTP DELETE FILE statement 1442

The FTP PUT FILE Statement 1443
Summary 1443
Chapter 53 Dynamic Link Libraries
Creating New DBPro Statements...........iiii 1446
Introduction 1446

A Dynamic Link Library (DLL) 1446
CreatingaDLL 1446
Starting Up Visual Studio, 1446

Adding the Code for New Statements 1448
Addinga StringTable 1449

Constructingthe Caption 1450

Adding the New Statements to DarkBASICPro 1451

AddingHelp 1452
Adding More New Commands 1456
Functions that Return Real Values 1456
Functions that Return Strings 1456
More String Handling Functions 1459
Summary 1460
Using Standard DLLSoovviiiiiiiieiiieeiieeeeeeeeeee e eeeesesesesesasesesesnsnannes 1462
Introduction 1462
The LOAD DLL Statement 1463
The DLL EXIST Statement 1463
The CALL DLL Statement 1463
The DLL CALL EXIST Statement 1464
The DELETE DLL Statement 1464
Summary 1465

RS0 (811 o 1T 1467

AcCknowledgements

I would like to thank all those who helped me prepare the final draft of this book.

Inparticular, VirginiaMarshall who proof-read the original script and Michael Kerr
who did an excellent job of checking the technical contents. Mark Armstrong
researched all the difficult bits for me and produced almost as much in the way of
notes asisin thisfinal text.

Any errorsthat remain are probably due to the usual extraparagraphs | added after
all the proof-reading was compl ete!

Thanksalso to The Game Creators Ltd for producing an excellent piece of software
- DarkBASIC Professional.

Many of the 3D models and textures are from The Game Creators Dark Matter 1
package and used with their kind permission.

Finally, thank you to every one of you who has bought this book. Any constructive
comments would be most welcome.

Email me at alistair @digital-skills.co.uk.

Introduction

Welcome to the second volume of a book that | hopeis a little different from any
other you've come across before. Instead of just telling you about software design
and programming, it makes you get involved. There's plenty of work for you to do
since the book is full of exercises - most of them programming exercises - but you
also get afull set of solutions, just in case you get stuck!

If you've worked your way through Volume 1, then you should have gained agood
grounding in, not only DarkBASIC Pro, but also professional programming skills.

Most of Volume 2 isdedicted to 3D graphicsbut thereafew other interesting topics
such as network programming and how to createyour own DarkBA SIC commands.

Learn by Doing

The only way to become a programming expert isto practice. No one ever learned
any skill by just reading about it! Hence, thisis not atext book where you can just
sit back inapassiveway and read from cover to cover whilst sittinginyour favourite
chair. Rather it is designed as a teaching package in which you will do most of the
work.

The tasks embedded in the text are included to test your understanding of what has
gone before and as amethod of helping you retain the knowledge you have gained.
It istherefore important that you tackle each task as you cometo it. Also, many of
the programming exercises are referred to, or expanded, in later pages so it is
important that you are familar with the code concerned.

What You Need

You'll obviously need a PC and a copy of DarkBASIC Pro.

At this stage you'll also need some programming skills and a basic knowledge of
DarkBASIC Pro.

How to Get the M ost out of this Text

Experience has shown that readers derive most benefit from this material by
approachingitsstudy in an organised way. Thefollowing strategy for study ishighly
recommended:

1. Read achapter or section through without taking notes or worrying
too much about topics that are not immediately clear to you. This will
give you an overview of the contents of that chapter/section.

2. Re-read the chapter. This time take things slowly; make notes and
summaries of the material you are reading (even if you understand the
material, making notes helpsto retain the facts in your long-term
memory); re-read any parts you are unclear about.

3. Embedded in the material are a series of activities. Do each task asyou
reach it (on the second reading). These activities are designed to test
your knowledge and understanding of what has gone before. Do not be
tempted to skip over them, promise to come back to them later, or to

make only a half-hearted attempt at tackling them before looking up
the answer (there are solutions at the end of each chapter). Once you
have attempted atask, look at the solution given. Often there will be
important points emphasised in the solution which will aid higher
understanding.

4. Asyou progress through the book, go back and re-read earlier chapters,
since you will often get something new from them as your knowledge
increases.

Syntax Diagrams

The format of each statement is explained using a syntax diagram. Raised tiles
represent keywords of the language while sunken tiles are parts of the statement for
which you are free to create your own values. Parts within square brackets are
optional while braces represent a choice of options. Statements that return avalue
show this using an arrowed line and the type of value returned.

Raised tiles
represent keywords N—dl
l Jt
N4 N 4 N4 N4

Braces represent choice

Sunken tiles
represent programmer-assigned
values

An arrowed line
indicates that the
statement returns a value

—
N

real

Line Continuation Symbol

Occasionaly, a single programming instruction has to be split over two or more
lines because of limited page width. In such cases the second line(and subsequent
lines) beginswith the % symbol. For example, the instruction

PCOSI TI ON OBJECT 2, OBJECT POSI TI ON X(2), OBJECT PCSI TION Y(2)-0.1, OBJECT POSI TION Z(2)+0. 1
might appear as

PCSI TI ON OBJECT 2, OBJECT POSI TI ON X(2),
LOBJECT POSI TION Y(2)-0.1, OBJECT POSI TION Z(2)+0. 1

In such casesyou should enter the code asasinglelinewhen creatingaDarkBASIC
Pro program.

1

3D Coordinate System

3D Primitives

3D Vectors

Cameras

Lights

Vertex and Surface Normals
Rotation

Textures

The Major Planes in 3D
Vertices, Edges and Polygons
Wireframe Models

World Units

DarkBASIC Pro: 3D - Concepts and Terminology 743

The 3D World

I ntroduction

Welcome to the world of 3D. Of course, we can create great games in 2D - many
people still consider 2D games like Space Invaders and Pac-Man to be some of the
best games ever invented - but for sheer eye candy you really can't beat 3D.

In this chapter we'll get abroad view of the 3D world created by computers. Well
cover the basic concepts and define some of theterms. Many of these conceptswill
be explained in greater detail in later chapters aswe discover how DarkBASIC Pro
implements many of these ideas.

The Coordinate System

AXeES

FI1G-30.1

The Axesused in 3D

744

In a 3D world, just asin a 2D one, we need to identify the position of any point
within that world. Thiswedo using three axes (known aswor Id axes) for reference.
As before, we need x and y axes for width and height, but this time we also need a
z axis to measure depth (see FIG-30.1).

I

+Z

+X

Vo

In the figure above, the axes have been skewed slightly to give a better perspective
In reality the x-axis runs across the screen, the y-axis runs up and down, and the
z-axis points directly out of the screen (-z) and into the screen (+2) (see FIG-30.2).

DarkBASIC Pro: 3D - Concepts and Terminology

FIG-30.2 -+

3D Axesand the Viewer

The computer
screen

+z

+X

Planes

In mathematics, a planeis aflat surface with only two dimensions. 3D space has
three main planes: the X-Y plane, the X-Z plane and the Y-Z plane (see FIG-30.3).

FIG-30.3 ‘
The

The Main 3D Planes X-Y Plane

The
X-Z Plane

DarkBASIC Pro: 3D - Concepts and Terminology 745

Points

FIG-30.4

Determining the Position of a

Point in 3D Space

746

The X-Y planehasthex andy axes passing through its centre and, like every plane,
expandsto infinity inall directions. The X-Z plane hasthex and z axes at its centre,
and the Y-Z plane hasthey and z axes at its centre.

These three planes are important since each divides space into two equally sized
areas. The X-Y plane splits space with one half to the front, the other half to the
back. The X-Z planes splits spaceinto above and below sections, and the Y-Z plane
splits spaceinto |eft and right sections.

With al three planesin place, spaceis split into eight equally-sized sections. Each
of these sectionsis known as an octant.

Of course, not al planes lie on axes; there are an infinite number of planes, some
paralel to the main planes, others at anglesto those planes, but it isthe main planes
that will be useful in many of the calculations required when determining the
position of an object in 3D space.

To specify the position of apoint in 3D space we state its distance from the origin
along all three axesin the order, X, y, z (see FIG-30.4).

e
Apointin
space
P

Measure the point's
distance out from the
origin along the x-axis

2
Measure the point’'s

distance out from the
origin along the y-axis

Ve

DarkBASIC Pro: 3D - Concepts and Terminology

FIG-30.4
(continued)

Determining the Position of a

Measure the point's
distance out from the
origin along the z-axis

I

We might, for example, state that point p is at the position (8,12,5) meaning that
point p is 8 units along the x-axis, 12 units along the y-axis and 5 units along the

Z-axis.

Distances are measured in units. These units have no relationship to rea-life
measurements such as centimetresor inches. Instead, objectsare constructed in such
away asto be the correct size relative to other objects. For example, if we makea
human character 6 units high, then a simple house might be 18 to 25 units high. Of
course, if you wish, you can think of 1 unit being the equivalent of areal distance.
The scale you choose will depend on the context; when creating aworld with an
ant as the main character, 1 unit might be equivalent to a millimetre, while atruly
interstellar game might make 1 unit equivalent to 1 light year.

Every 3D object we create hasits own local axes. These axes are (initiadly, at least)

aligned to the world axes. FIG-30.5 shows a cuboid and its local axes.

Point in 3D Space
World Units
Local Axes
FI1G-30.5

Each Object hasits
Own Local Axes

I

DarkBASIC Pro: 3D - Concepts and Terminology

+z

+X

Each 3D object
has its own local

axes parallel to the
world axes

747

Rotation

An object can be made to rotate about its own, local, axes. In DarkBASIC Pro
rotation is measured in degrees. For example, we might rotate an object 30 degrees
about it's x-axis as shown in FIG-30.6.

Initial Position Rotated 30° about

VN the x-axis

Y-axis

FIG-30.6

A Cuboid is Rotated
30° about the x-axis

Rotation is performed in aclockwise direction when viewed down the positive end
of an axis (see FIG-30.7).

FIG-30.7

Rotation is in a
clockwise direction

QQ
L when viewed from
s the positive end of
an axis

By specifying a negative angle of rotation, an object will rotate anti-clockwise.

Clockwise Rotation

3D Vectors
Although the purpose of this chapter is to describe basic 3D concepts, it's worth
mentioning that DarkBASIC Pro allows the creation of a 3-element vector
specifically for storing the coordinates of apoint in 3D space. The vector is created
using the MAKE VECTORS statement which has the format shown in FIG-30.8.
FI1G-30.8 —
Statement l —
integer
In the diagram:
Vectno isan integer value giving the ID to be assigned

to the 3D vector being created.

The statement returns 1 if the vector is created successfully; otherwise zero is
returned. Usually we won't worry about the value returned and can create a 3D
vector with a statement such as:

result = MAKE VECTOR3(1)

748 DarkBASIC Pro: 3D - Concepts and Terminology

We can visualise a 3D vector object as shown in FIG-30.9.
FIG-30.9 A 3D Vector

A 3D Vector 12.3| 46 | 1.7
...an x value,

ay value
and a z value

QQQ

The 3D vector
holds three values...

Many of the DarkBASIC Pro statements we'll encounter later make use of 3D
vectorsfor storing results, so it's useful to give you this quick grounding in them at
this early stage. We'll learn more on this subject in alater chapter.

Object Terminology

Just as 2D has afew basic shapes such asaline, acircle, atriangle and arectangle,
so we have a set of basic shapes (known as primitives) in 3D. These include the
sphere, cylinder, cone, and cube. In FIG-30.10 we see and example of a cube.

FI1G-30.10
A Cube - An Example of
aPrimitive
solid wireframe
The cube is shown in two ways:. solid, with shading caused by the light falling on
its surface, and wir efr ame showing how the cube is constructed.
Polygon is the term used for a many-sided enclosed area. The simplest polygon
(that is, the one with the least sides) is the triangle. The point where two lines of a
polygon meet isknown asavertex. A triangle has three vertices (see FIG-20.11).
FIG-30.11 Triangle
The Vertices of a
Triangle
The line between two verticesis known as an edge (see FIG-30.12).
FI1G-30.12
Edges

Every 3D shape in a game is constructed from polygons (normally triangles), as
you can see from the wireframe version of the cube shown in FIG-30.10.

The greater the number of polygons used to create an object, the more detailed and
realistic it will appear (see FIG-30.13). But thereis a priceto pay for greater detail

DarkBASIC Pro: 3D - Concepts and Terminology 749

FI1G-30.13

Varying the Polygonsin
a Sphere

Textures

FI1G-30.14

Adding Textureto a3D
Object

- higher processing requirements. As you increase the number of polygons that go
to make up the objectsin your scene, the harder your processor and video card need
towork. Ask too much of your hardware, and screen updating will slow down. The
number of times the screen is redrawn in one second is known as the frame rate
and is quoted in frames per second (fps). If the frame rate falls much bel ow about
20 fps, then your eyes will become aware of the screen refreshing and the picture
will become jerky.

A Sphere with Few Polygons A Sphere with Many Polygons

In solid mode (as opposed to wireframe), a 3D object has abland grey surface, but
we can use an image wrapped around that object to give it a greater reality. By
wrapping the image of riveted steel plate round a sphere, we can createtheillusion
of ametal ball. Wrap an image of wooden planks round the same sphere and we
create awooden ball (see FIG-30.14).

Images with an Alpha Channel

750

The image used to texture an object can be one of many different formats. For
example, JPG and BMP files are often used, but sometimes we will see images
stored in the PNG or TGA format.

PNG and TGA files are amongst those formats capable of embedding an alpha
channel within the image. An apha channel affects how visibleanimageisandis
probably best explained with an analogy.

Imagine you've just painted an image on a piece of glass and that the light
illuminating the picture comes from behind the glass (see FIG-30.15) - likelooking

DarkBASIC Pro: 3D - Concepts and Terminology

out through a church's stained-glass window.
FI G-3015 Back of Glass

Front of Glass

Perceived Image Light Source

Depends on the Backing @\

The image seen at
the front of the glass
depends on the paint
used on the back

If we were to paint the back of the glass black, no light would get through and we
wouldn't see the picture. If we used grey paint rather than black, then some light
would get through. If we painted a pattern on the back of the glass using amixture
of black, dark grey, and light grey paint, the image would appear to have bright,
dull and black areas depending on the paint on the back of the image.

This is how the alpha channel of an image works. As well as the basic red, green
and blue elements (or channels) that go to make up the image, a fourth, alpha,
channel is added. Thisisjust another layer to the image which can only be shaded
using greyscale colours (white through to black). Where black is used, the original
image is unseen; where white is used the image appears at normal brightness (this
iswhere the glass analogy fallsdown sinceit would be at its brightest with no paint
on the back of the glass). Shades of grey give varying degrees of image brightness.
FIG-30.16 shows original images, apha channels, and the overall effects created.

FIG-30.16
Basic Image
Using an Alpha Channel

Thereal world isavast place, but with the help of television we can view any part
of it- all weneedisacamera What the TV camerabroadcastswe see on our screens.
Move the camera and we see a different part of the world.

Cameras

This is exactly how the 3D world we create within the computer works; what we
see on the computer screen is the output from avirtual camera. The camera can be
moved, just like areal camera, revealing different parts of our new 3D world. We
can zoom the camera in or out allowing us to enlarge a distant object or show
everything within asmall space.

DarkBASIC Pro: 3D - Concepts and Terminology 751

Lights

FI1G-30.17

Surface Normals

FIG-30.18

Visible Polygons

752

We can even use several cameras, switching between each to change what the user
isseeing on the screen. Unlikereal life, there's never any chance of seeing acamera
in the view produced by a second camera - all virtual cameras are invisible!

DarkBASIC Pro creates and positions a single cameraautomatically at the start of
every program that uses 3D objects. The exact position of the camera depends on
the positioning of the 3D objects, since the camera normally places itself in order
to seethe objectsthat have been created. However, asthe programmer, you can take
complete control of the cameraand thereby determinejust exactly what appearson
the screen.

We can even set up the lights we want to use to illuminate our new world - just like
placing lights on a movie set. By positioning various types of lights in just the
correct positions, we can create any type of atmosphere we want - from dark and
mysterious to bright and sunny. Like cameras in the 3D world, the lights are
invisible, but the effects they create are not!

To help calculate the effect of lights on the individual polygons of a 3D object, a
set of normals are maintained. A surface normal is avector from the centre of a
polygon perpendicular to the surface of that polygon. Every polygon in an object
has an associated normal (see FIG-30.17).

A normal for
each polygon

Normals are stored as mathematical expressions and are not part of the visible
structure of the model.

In principal every polygon can have two surface normals: one on the top side and
one on the bottom. However, often models only use a single normal - on the side
facing outwards.

When using surface normalsto calcul ate how an object should belit, we sometimes
get arather faceted appearance, with an obvious jump in shading from one polygon
to the next (see FIG-30.18).

DarkBASIC Pro: 3D - Concepts and Terminology

To solve this, vertex normals may be used. A vertex normal is created at every
vertex of apolygon (see FIG-30.19).

FI1G-30.19 Vertex Normals

Vertex normal \ertex normal

Vertex normal

Vertex normal Vertex normal

Vertex normal

Vertex normal Vertex normal

Vertex normal

Every vertex in a polygon has a When two or more polygons have common vertices, that vertex has a separate
vertex normal. vertex normal for each of the polygons that share the vertex.

These vertex normals are cal culated from the values of the two edges which meet
at that vertex.

Using vertex normals creates a smoother lighting effect, but requires more
calculations. Y ou can see the effect produced in FIG-30.20.

FI1G-30.20
Polygon Smoothing
Activity 30.1
Load and run the program basic3D.exe. Thiswill demonstrate some of the
basic concepts covered in this chapter.
(Y ou can download this program, and al other files used in this text from
www.digital-skills.co.uk)
Aswell seein the chapters that follow, DarkBASIC Pro has literally hundreds of
commands designed to help us create a 3D world and manipul ate the objectsin that
world.
Summary

® The 3D world usesthree axes. x, y and z.

® 3D spaceis split into eight octants by the X-Y, X-Z and Y-Z planes.

DarkBASIC Pro: 3D - Concepts and Terminology 753

754

Space within the 3D world is measured in world units. Thesedo not relateto real
world units.

A point in 3D space is defined by its distance along each of the axes.
3D objects have their own local axes.

3D objects can be rotated about their own local axes.

Rotations are measured in degrees.

Rotation isin aclockwise direction (as viewed from the positive end of the axis
of rotation).

DarkBASIC Pro provides 3D vector objectsin which the coordinates of a point
in 3D space can be stored.

3D objects are constructed from polygons.

The simplest polygon isthe triangle.

The end of aline within apolygon is known as a vertex.
The line between two verticesis known as an edge.
More detailed objects require more polygons.

Increasing the number of polygons used in a scene increases the load on the
computer.

When faced by a heavy load, the computer will output at a reduced frame rate.
Images can be used to texture a 3D shape to increase realism.

Someimages can contain al pha channel s which effect lightness when the image
is used to texture asurface.

Virtual cameras determine which parts of the 3D world are shown on the screen.
Lights can be added to a scene to help create the desired atmosphere.

The effects of lights on a surface are calculated using surface normals or vertex
normals.

Every polygon has an associated surface normal.

A surface normal is avector at right angles to its polygon.

Using surface normals to calculate shading can result in a patchy effect.
Every vertex of apolygon has an associated vertex normal.

Vertex normals may be used to create smoother shading effects, but at the cost
of more complex calculations.

DarkBASIC Pro: 3D - Concepts and Terminology

o

Absolute and Relative Object Movement
Global and Local Axes

Creating 3D Primitives

Culling

Deleting 3D Primitives

Duplicating 3D Objects

Merging Objects

Pointing an Object in a Specific Direction
Positioning 3D Objects

Retrieving 3D Object Data

Rotating 3D Objects

Resetting Local Axes

Resizing 3D Objects

Showing and Hiding 3D Objects

Wireframe Mode

DarkBASIC Pro: 3D Primitives 755

3D Primitives

I ntroduction

DarkBASIC Pro contains several statements for creating and manipulating 3D
primitivessuch as spheres, conesand cubes. Thesestatementsare explainedin detail
below. A sample of the possible shapesis shown in FIG-31.1.

FIG-31.1

The 3D Shapes that can
be Created in
DarkBASIC Pro

Cone Cylinder

Sphere

Creating a Cube

The MAKE OBJECT CUBE Statement

To create acube on the screen, we use the MAKE OBJECT CUBE statement. Like
sprites, every 3D object created must be given an identifying integer value (its D).
No two 3D objects within a program can be assigned the same ID. The size of the
cube is also defined in this statement, which has the format shown in FIG-31.2.

FIG-31.2 —
CUBE Statement
In the diagram:
objno isan integer value giving the ID to be assigned to the cube.
size isareal value specifying the width, height and depth of the
cube. Thisvalueis given in world units.
A typical usage of this statement might be:
MAKE OBJECT CUBE 1, 10
Thiswould create a cube (with ID 1) which is 10 units wide, by 10 units high, by
10 units deep. FIG-31.3 shows a screen shot of the resulting cube.
FIG-31.3

A Cubein DarkBASIC Pro

This may not look too impressive as a 3D object, but that’s because we' re looking
at the cube straight on and therefore can only see the front face of the object.

756 DarkBASIC Pro: 3D Primitives

LISTING-31.1

Creating a Cube

Statements such as
COLOR BACKDROP
and BACKDROP ON
were covered in Volume
1.

FIG-31.4

How the Cubeis
Positioned by the
Program

The cube shown above was created using the program given in LISTING-31.1.

REM *** Set display resolution and backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

COLOR BACKDROP 0

BACKDROP ON

REM *** Nake the cube ***
MAKE OBJECT CUBE 1, 10

REM *** End program ***
WAI T KEY
END

Activity 31.1

Typeinthe programin LISTING-31.1 (object3D01.dbpro) and check that you
get the same display as shown above.

When any of the 3D primitivesisfirst created, its centreis positioned at the origin.
FIG-31.4 showsamodel of what hasbeen created by theprogramin LISTING-31.1.
The 3 axes and parts of the XZ and Y Z planes have been included to give aclearer
picture of how the cube is positioned.

The centre of the cube
is at the origin

Creating Other Primitives

DarkBASIC Pro has a set of similar MAKE statements to create other basic 3D
shapes. Likethe cube, all of these objectsare initially positioned with their centres
at the origin. These statements are described below.

The MAKE OBJECT BOX Statement

The MAKE OBJECT BOX statement is similar to the MAKE OBJECT CUBE
statement, but allows the three dimensions of the object to be set separately. The
statement has the format shown in FIG-31.5.

DarkBASIC Pro: 3D Primitives 757

FIG-31.5

BOX Statement
In the diagram:

objno isan integer value giving the ID to be assigned to the box
being created. No other 3D object in the program can be
assigned the same value.

w isareal value giving the width (x-dimension) of the box.

h isareal value giving the height (y-dimension) of the box.

d isareal value giving the depth (z-dimension) of the
box.

For example, the line

MAKE OBJECT BOX 2, 10, 3.7, 12
would create abox with ID 2 which is 10 units wide, by 3.7 units high, by 12
units deep.

The MAKE OBJECT SPHERE Statement

The MAKE OBJECT SPHERE statement creates a sphere of a specified diameter
FIG-31.6 but offers extra options. The statement has the format shown in FIG-31.6.

) [e [T

The MAKE OBJECT SPHERE Statement

In the diagram:
objno isan integer value giving the ID assigned to the
sphere being created.
diameter isarea number representing the diameter of the
sphere.
rows is an integer value specifying the number of lines
of latitude making up the sphere.
columns isan integer value specifying the number of lines
of longitude making up the sphere.
The statement

MAKE OBJECT SPHERE 3,40.0

would create a sphere with a diameter of 40 units and assign it the ID number 3.
However, the sphere produced is constructed from a relatively small number of
polygons and hence its curve is not particularly smooth. By using the rows and
columnsvalues, we can control the number of polygons used to construct the sphere
and thereby produce a more redlistic effect. For example, the line

758 DarkBASIC Pro: 3D Primitives

FIG-31.7

Creating a Smoother
Sphere

MAKE OBJECT SPHERE 3, 40. 0, 100, 100

would create amuch smoother sphere. FIG-31.7 shows the difference between the
default sphere and the more detailed one.

e

The number of polygons
used has greatly increased

CREATE OBJECT SPHERE 3, 40.0 CREATE OBJECT SPHERE 3, 40.0,100,100

However, there'sapriceto be paid for the more detail ed sphere; the more polygons
we use when creating any 3D shape, the more work the processor/video card needs
to do and this reduces the frames per second that can be achieved.

Activity 31.2

Modify your previous program so that a standard sphere (diameter 10) is
created instead of a cube.

Modify the sphere to have 40 columns by 40 rows.

The MAKE OBJECT CYLINDER Statement

FIG-31.8

The MAKE OBJECT
CYLINDER Statement

A cylinder of a specified height can be created using the MAKE CYLINDER
OBJECT statement. The diameter of the cylinder’ s base automatically matchesthe
height. The statement has the format shown in FIG-31.8.

N4
m'm'm l’ hl

In the diagram:
objno isthe integer value assigned to the cylinder being
created.
h isareal value giving the height and diameter of
the cylinder.

DarkBASIC Pro: 3D Primitives 759

For example, we could make a cylinder of height 31.5 units using the statement:

MAKE OBJECT CYLI NDER 4, 31.5

The MAKE OBJECT CONE Statement

FIG-31.9

The MAKE OBJECT
CONE Statement

The MAKE OBJECT CONE statement creates a cone of a specified height. The
diameter of the base automatically matchesthe height. Thisstatement hastheformat
shownin FIG-31.9.

N—d
mmlm I/ hl

In the diagram:
objno isthe integer value assigned to the cone being
created.
h isareal value giving the height of the cone and

the diameter of its base.

For example, we could make a cone of height 10.1 units using the statement:

MAKE OBJECT CONE 5, 10.1

Activity 31.3
Modify your previous program to display acylinder of diameter 5.

Modify the program again to show a cone of the same height as the cylinder.

The MAKE OBJECT PLAIN Statement

FIG-31.10

The MAKE OBJECT
PLAIN Statement

Note the spelling used in
theinstruction!

760

A flat planestanding onthe XY planecan be constructed usingthe MAKE OBJECT
PLAIN statement which has the format shown in FIG-31.10.

mmm wl JI‘Jl

In the diagram:
objno isthe integer value assigned to the plane being
created.
w isareal value giving the width of the plane.
h isareal value giving the height of the plane.

For example, we could create a plane which is 1000 units wide by 500 high using
theline:

MAKE OBJECT PLAIN 6, 1000. 0, 500.0

The centre of the plane will be located at the origin (see FIG-31.11).

DarkBASIC Pro: 3D Primitives

FIG-31.11

How a Planeis Positioned
when First Created

The MAKE OBJECT TRIANGLE Statement

The simplest of al polygons, the triangle, can be constructed using the MAKE
OBJECT TRIANGLE statement. The statement requires the positions of all three
vertices to be supplied, so this statement contains a significant number of values,
as shown in FIG-31.12.

FIG-31.12

The MAKE OBJECT
TRIANGLE Statement

] [omseer [rmmmace] =51 Lo o T A ¥
S| 298| e =95 285 27 2

In the diagram:
objno isthe integer value assigned to the triangle being
created.
x1,y1,z1 are real numbers representing the position of the
first vertex.
X2,y2,22 are real numbers representing the position of the
second vertex.
x3,¥3,23 are real numbers representing the position of the
third vertex.
Theline

The additional spacing
used within the MAKE OBJECT TRIANGLE 7, 2,0,3, 5,0,3, 3.5,6,7
instruction is used to

highlight the various ; i -
parameter groupings. would create the triangle shown in FIG-31.13.

DarkBASIC Pro: 3D Primitives 761

FIG-31.13

Creating a Triangle Object

Notice that, unlike any of the other objects, a triangle can be placed anywhere in
3D space.

Positioning an Object

Other than the triangle, every object is created with it's centre at the point (0,0,0).
However, once an object has been created, DarkBASIC Pro offers several ways of
moving an object to another position.

The POSITION OBJECT Statement

Oneway to move an object isto usethe POSITION OBJECT statement. The object
ismoved so that its centreis at the position specified. The statement has the format
shown in FIG-31.14.

FIG-31.14
OBJECT Statement
In the diagram:
objno istheinteger value previously assigned to the object.
XY,z are real values representing the position to which the
object isto be moved. It isthe centre of the object that is
placed at this position.

For example, if we wanted the centre of the cube we had created previously to be
moved to position (9,0,0), then we would use the statement:

PCSI TI ON OBJECT 1,9,0,0

Theresult of executing this statement is shown in FIG-31.15.

762 DarkBASIC Pro: 3D Primitives

FIG-31.15

The Result of Moving the

Cubeto (9,0,0)

LISTING-31.2

Moving the Cube

The centre of the cube
is at (9,0,0)

LISTING-31.2 is amodification of the previous listing which moves the cube to
position (9,0,0) after the user presses akey. The new lines have been highlighted.

REM *** Set display resolution and backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

COLOR BACKDROP 0

BACKDROP ON

REM *** NMake the cube **
MAKE OBJECT CUBE 1, 10

REM *** Move cube to (9,0,0) after key press ***
VWAI T KEY

PCSI TI ON OBJECT 1,9,0,0

REM *** End program ***
WAI T KEY
END

Activity 31.4

Add thelines

REM *** Nove t he cube backwards ***
WAI T KEY
POSI TI ON OBJECT 1, 9,0, 30

so that the object is moved for a second time.

Modify your previous program to match that givenin LISTING-31.2.

Notice that, in its final position, the cube looks smaller since it has now moved

further away from our viewing position.

DarkBASIC Pro: 3D Primitives

763

Activity 31.5

Write a program (object3D02.dbpro) to create the following objects, and then
position each as specified:

Object Number Object Type Dimensions Final Position
1 CUBE 4 9,0,0
2 BOX 10,15,5 -60,0,100
3 SPHERE 7 -30,-40,50
4 CYLINDER 12 25,0,120
5 CONE 12 0,25,100

Add aWAIT KEY statement between each move.

The screen should appear as shown below.

Screen at Start Screen at End

The MOVE OBJECT Statement

The MOVE OBJECT statement can be used to move an object a specified distance
from its current location.

There are four possible directions available: RIGHT, LEFT, UP and DOWN. The
statement has the format shown in FIG-31.16.

FIG-31.16

N 4
The MOVE OBJECT
Statement

N— 4
DOWN —

N— 4

In the diagram:
UP, DOWN, LEFT, RIGHT
One of these keywords must be used to indicate in
which direction the object isto be moved.

objno isaninteger value giving the ID of the object to be
moved.

764 DarkBASIC Pro: 3D Primitives

dist isareal value giving the number of unitsthe
object isto moved.

The direction of movement for each option is shown in FIG-31.17.
FIG-31.17

Using the MOVE
OBJECT Statement

MOVE OBJECT UP

MOVE OBJECT LEFT ’ ﬁ

MOVE OBJECT RIGHT

MOVE OBJECT DOWN

Notice that there is no option to move the object backwards or forwards (i.e. along

the z-axis). For example, object 1 could be moved 10.5 unitsto the right using the
Statement:

MOVE OBJECT RIGHT 1,10.5

Activity 31.6

Create a new program (object3D03.dbpro) containing a cube of size 10.
Use POSITION OBJECT to place the cube at (9,0,100).

Now move the cube 31.3 units to the right.

PlaceaWAIT KEY statement before each action.

Rotating Objects - Absolute Rotation

It is possible to rotate an object about one of its own local axes. FIG-31.18
emphasi ses the difference between the main (or world) axes and local axes.

FI1G-31.18

An Object's Local Axes yraxis

World Axes

Possible rotations are shown in FIG-31.19.

DarkBASIC Pro: 3D Primitives 765

FIG-31.19

local z-axis

Rotation about
the z-axis

local x-axis
Rotation about
the y-axis

local y—axisl

Possible Rotations about
Local Axes

The XROTATE OBJECT Statement

This command causes an identified object to rotate to a specific angle about the
object’ slocal x-axis. Rotation istowards the viewer. The statement has the format
shown in FIG-31.20.

FIG-31.20 N—
OBJECT Statement
In the diagram:
objno isthe integer value specifying the object.
angle isareal number giving the angle (in degrees) to
which the object isto be rotated.
For example, an existing cube could be rotated about the x-axisto 45° using theline
XROTATE OBJECT 1, 45.0
FIG-31.21 shows the cube before and after rotation.
FIG-31.21
The Effect of the
XROTATE OBJECT
Statement

Cube 0° rotation Cube at 45° rotation

Activity 31.7
Write a program (object3D04.dbpro) which implements the following logic:

Set screen resolution to 1280 by 1024

Create a cube (40 units in size)

Move the cube to (0,0,100)

FOR degree :=1 TO 360 DO
Rotate cube to clegree0 around the x-axis.
Wait 1 millisecond

ENDFOR

Run the program and check that it performs as expected.

Modify the program so that the cube revolves in the opposite direction about
the x-axis.

766 DarkBASIC Pro: 3D Primitives

The YROTATE OBJECT Statement

To rotate an object about itslocal y-axiswe usethe YROTATE OBJECT statement
which has the format shown in FIG-31.22.

FIG-31.22
N4
Statement
In the diagram:
objno isthe integer value previously assigned to the object.
angle isarea number giving the angle (in degrees) to which the
object isto berotated.
For example, acube (ID 1) could be rotated about its y-axis to 60° using the line:
YROTATE OBJECT 1, 60.0
FIG-31.23 shows the cube after a rotation to 60°.
FIG-31.23
The Effect of the
YROTATE OBJECT
Statement

TheZROTATE OBJECT Statement

To rotate an object about its z-axis, we use the ZROTATE OBJECT statement
which has the format shown in FIG-31.24.

FIG-31.24
N__ 4
Statement
In the diagram:
objno isthe integer value previously assigned to the object.
angle isarea number giving the angle (in degrees) to which the
object isto be rotated.
For example, acube (1D 1) could be rotated about the z-axis to 110° using the line:
ZROTATE OBJECT 1, 110.0
FIG-31.25 shows the cube after arotation to 110°.
FIG-31.25
The Effect of the
ZROTATE OBJECT
Statement

DarkBASIC Pro: 3D Primitives 767

LISTING-31.3

Rotating an Object about
all Three Axes

The program in LISTING-31.3 revolves a cube about al three axes at the same
time.

REM ** Set display node ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40
POSI TI ON OBJECT 1, 0, 0, 200

REM *** Rotate cube 1 degree at a tine ***
REM *** around all three axes ***
FOR angle = 1 TO 360
XROTATE OBJECT 1, angle
YROTATE OBJECT 1, angle
ZROTATE OBJECT 1, angle
VWAIT 10
NEXT angl e

REM *** End program ***
WAI T KEY
END

Activity 31.8

Typein and test the program given above (object3D05.dbpro).

TheROTATE OBJECT Statement

FI1G-31.26

Rather than use three separate statements to rotate an object about all three axes,
the same effect can be achieved using the ROTATE OBJECT statement. This
statement takes three values specifying, for each axis, the degree of rotation. The
format of the statement is shown in FIG-31.26.

The ROTATE
OBJECT Statement

N—d N—4 N4
Ww l/ l/ l/

768

In the diagram:
objno isthe integer value previously assigned to the object.
xangle isarea number giving the angle (in degrees) to which the
object isto be rotated about its x-axis.
yangle isarea number giving the angle (in degrees) to which the
object isto be rotated about its y-axis.
zangle isarea number giving the angle (in degrees) to which the
object isto be rotated about its z-axis.
Activity 31.9

Rewrite the program you created in the previous Activity, replacing the
XROTATE, YROTATE and ZROTATE statements with asingle ROTATE
OBJECT statement, producing the same effect as before.

All statements in the previous section rotate an object to a specific angle,

DarkBASIC Pro: 3D Primitives

irrespective of that object’s current inclination. For example, if we use the
YROTATE OBJECT statement to turn a cube to 60°, the initial angle of the cube
before the statement is executed is irrelevant since the end result will be that the
cube will end up at the specified angle of 60°. This type of rotation is known as
absoluterotation.

The SET OBJECT ROTATION Statement

FIG-31.27

The SET OBJECT
ROTATION ZY X
Statement

When an object isrotated about all three axes at the sametime, theactionisnormally
implemented by first rotating the object about the x-axis, then the y-axisand finally
the z-axis. Of coursg, it's all done so quickly that the operation will appear to be
instantaneous. However, should we want to reversethe order in which the rotations
take place (i.e. z-axis first, x-axis last) then we can use the SET OBJECT
ROTATION statement. Once set, the order in which the axes are handled will
remain on this new setting unless you revert to normal using a second option of the
SET OBJECT ROTATION statement, which has the format shown in FIG-31.27.

SET OBJECT ROTATION E
JE=d T [JEme =]

In the diagram:
XYZ Use this option to return the order of rotations to
the default x-axis, y-axis, z-axis order.
ZYX Use this option to set the order of rotations to
the z-axis, y-axis, x-axis order.
objno isan integer value specifying the object whose

order of rotation isto be modified.

Rotating Objects - Relative Rotation

FIG-31.28

Relative Rotation Terms

Itisalso possibleto makean object rotate by aspecific anglefromits current setting.
For example, if a cube has already been rotated 45° about the local y-axis, we can
command it to be rotated by a further 60° giving afinal rotation position of 105°.
Thistype of rotation - where the angle specified isadded to theinitial tilt - isknown
asrelativerotation.

When using relative rotation, different terms are used for rotation about each axis.

Hence, we use the term PITCH for rotation about the x-axis, TURN for rotation
about the y-axis and ROLL for rotation about the z-axis (see FIG-31.28).

DOWN ‘ local z-axis
A

RIGHT LEFT
RIGHT LEFT

PITCH TURN / ROLL

local y-axis

local x-axis

DarkBASIC Pro: 3D Primitives 769

ThePITCH OBJECT Statement

FI1G-31.29

The PITCH OBJECT
Statement

LISTING-31.4

Using Relative Rotation

We can tilt an object upwards (i.e. rotate it in a positive direction about the x-axis)
using the PITCH OBJECT UP statement which hastheformat shown in FIG-31.29.

~
Leien] [sesesr] « == 55T o e

In the diagram:

DOWN, UP Choose DOWN to make the object rotate clockwise (as
viewed from the positive side of the y-axis); choose UP to
make the object rotate anticlockwise.

objno isthe integer value previously assigned to the object.

angle isarea number giving the angle (in degrees) to which the
object isto be rotated relative to its current position.
The angle can be a positive or negative value.

The program in LISTING-31.4 performs the same function as the one you created
in Activity 31.7 where you used the XROTATE statement to rotate a cube through
360°. However, this time the XROTATE statement has been replaced by aPITCH
OBJECT UP command.

REM *** Set screen resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40

PCSI TION OBJECT 1, 0, 0, 200

REM *** Revol ve the cube ***
FOR ¢ = 1 TO 360
PI TCH OBJECT UP 1, 1.0
WAIT 10
NEXT c
REM *** End program ***
WAI T KEY
END

Activity 31.10

Type in the program given above (object3D06.dbpro) and make sureit is
equivalent to the earlier program in Activity 31.7.

Modify the program so that the cube rotates in the opposite direction.

The TURN OBJECT Statement

FIG-31.30

The TURN OBJECT
Statement

770

This statement allows relative rotation about the y-axis and has the format shown
in FIG-31.30.

N— 4
-
s] { 2\

DarkBASIC Pro: 3D Primitives

In the diagram:

LEFT, RIGHT Choose RIGHT to make the object rotate to the
right about the y-axis; choose LEFT to make the
object rotate to the left.

objno isan integer value giving the ID of the object to
be rotated.
angle isarea number giving the angle (in degrees) to

which the object isto be rotated relativeto its
current position. The angle can be a positive or
negative value.

Activity 31.11

Modify your previous program so that the cube rotates to the right about the
y-axis.

TheROLL OBJECT Statement

Relative rotation about the z-axis is achieved using the ROLL OBJECT statement
which has the format shown in FIG-31.31.
FIG-31.31

The ROLL OBJECT E
Statement ROLL I OBJECTI I objno E I angle
'

In the diagram:

LEFT, RIGHT Choose RIGHT to make the object rotate to the
right about the z-axis; choose LEFT to make the
object rotate to the left.

objno isan integer value giving the ID of the object to
be rotated.

angle isarea number giving the angle (in degrees) to

which the object is to be rotated relative to its
current position. The angle can be a positive or
negative value.

Activity 31.12

Modify your previous program so that the cube rotates to the | eft about the
z-axis.

The POINT OBJECT Statement

The main polygon of a 3D object is directed towards the player's viewpoint when
itiscreated. Thispolygon can berotated to face any point in space using the POINT
OBJECT statement. This statement has the format shown in FIG-31.32.

DarkBASIC Pro: 3D Primitives 771

FIG-31.32

The POINT OBJECT
Statement

LISTING-31.5

Using the POINT
OBJECT Statement

FI1G-31.33

Turning an Object to Face
a Specified Point

[== | ole | aljE (e | ol

In the diagram:
objno isan integer value giving the ID of the object to
be affected.
X,Y,Z are the coordinates of the point in space at which

the main polygon of the 3D object isto face.

In the program shown in LISTING-31.5 a cube is made to face the point (45,45,0)
using the statement:

PO NT OBJECT 1, 45,45,0

REM *** Set display resolution and backdrop ***
SET DI SPLAY MCDE 1280, 1024, 32

COLOR BACKDROP 0

BACKDROP ON

REM *** Nake the set of objects ***

MAKE OBJECT CUBE 1, 40

REM *** Nove cube to (0,0,100) after key press ***
WAI T KEY

POSI TI ON OBJECT 1, 0, 0, 100

REM *** poi nt cube at (45,45,0)***

WAI T KEY

PO NT OBJECT 1, 45,45,0

REM *** End program ***

WAI T KEY

END

Theresult isshown in FIG-31.33.

Initially, the cube’s main polygon faces the | After the POINT OBJECT statement is
viewer. executed, the main polygon faces (45,45,0).

Activity 31.13

Typein and test the program given in LISTING-31.5 (object3D07.dbpro).

Modify the program to make the cube face the point (-20,17,-10).

The MOVE OBJECT distance Statement

772

We've aready encountered aMOVE OBJECT statement which allows an object to
be moved up, down, left, or right, but a second version of MOVE OBJECT exists
whichwill movean object inthedirectionitsmain polygonisfacing. Thisstatement
has the format shown in FIG-31.34.

DarkBASIC Pro: 3D Primitives

FIG-31.34

~—4
o s | el | =
The MOVE OBJECT

distance Statement

In the diagram:
objno isan integer value specifying the object to be
moved.
dist isareal value specifying the distance to be
moved.
Activity 31.14

In your previous program, immediately after the POINT OBJECT statement,
add the following lines:

REM *** Nove cube ***
VWAI T KEY
MOVE OBJECT 1, 20

Run the updated program.

TheFIX OBJECT PIVOT Statement

When an object rotates, itslocal axesrotatewith it. In FIG-31.35 we seeacube and
its local axes before and after it has been rotated to -90° about its local z-axis.

FI1G-31.35 local x-axis
local z-axis local z-axis
How the Local Axesare
Affected When an Object
is Rotated
local x-axis .
local y-axis
local y-axis
Local Axes - Initial Position Local Axes - Cube Rotated to -90°

about the z-axis

If we now rotate the cube about its own x-axis, it will turn left-to-right rather than
up-and-over, because its x-axis has shifted position. This is demonstrated in
LISTING-31.6 wherethe cubeis rotated afull 360° about its x-axis, rotated by -90°
about its z-axis and then rotated afull 360° about its x-axis for a second time.

LISTING-31.6 REM *** Set display resolution ***

SET DI SPLAY MCDE 1280, 1024, 32

REM *** NMake and position cube ***
MAKE OBJECT CUBE 1, 40

POSI TI ON OBJECT 1, 0, 0, 100

Loca Axes Move with
the Object

REM *** Rotate cube 360 about x-axis ***
FOR degree = 0 TO 360

XROTATE OBJECT 1, degree

WAIT 1
NEXT degree

continued on next page

DarkBASIC Pro: 3D Primitives 773

LISTING-31.6 REM *** Rotate cube to -90 about z-axis

(continued) FOR degree = 0 TO -90 STEP -1
) ZROTATE OBJECT 1, degree

Local Axes Movewith VWAI T 10

the Object NEXT degr ee

REM *** Rotate cube 360 about x-axis ***
FOR degree = 0 TO 360

XROTATE OBJECT 1, degree

VAT 1
NEXT degree

REM *** End program ***
WAI T KEY
END

Activity 31.15

Typein and test the program given in LISTING-31.6 (object3D08.dbpro).

When an object has been rotated, it is possible to reset the local axes so that they
areparallel tothemain axes. Thisisdoneusing the FIX OBJECT PIVOT statement
whose format is shown in FIG-31.36.

FIG-31.36
Statement —
In the diagram:
objno isan integer value specifying the object whose
local axes areto be reset.
When this statement is executed, the object in question has its local axes reset so
that the x-axis lies left-to-right, the y-axis top-to-bottom, and the z-axis in-to-out
(see FIG-31.37).
FI G-3137 focabeas local z-axis local z-axis
The Effect of Using FIX /
OBJECT PIVOT
local x-axis |
local y-axis
local y-axis
Cube rotated -90 degrees Cube’s local Axes are Reset
about the z-axis
local y-axis

local z-axis

local y-axis \ local x-axis
local z-axis —
/ 4 / local x-axis

Cube rotated -45 degrees
about the z-axis Cube’s local Axes are Reset

774 DarkBASIC Pro: 3D Primitives

Activity 31.16

In your previous program (object3D08.dbpro), add the line
FI X OBJECT PIVOT 1

before the final FOR loop structure.

How does this affect the rotation of the cube?

Modify the program again so that the cube is only rotated to -45° in the second
FOR loop.

How is the cub€e's rotation affected this time?

Resizing Objects

It is possible to change the size of an object after it has been created. Y ou have the
option to resize one, two, or al three of the object’s dimensions. This alows you
to make an object uniformly larger or smaller, or to distort the original shape by
changing each dimension by differing amounts.

The SCALE OBJECT Statement

FI1G-31.38

The SCALE OBJECT
Statement

Resizing an existing 3D object is achieved using the SCALE OBJECT statement
which has the format shown in FIG-31.38.

][551 o o o o o o

In the diagram:

objno isthe integer value previously assigned to the
3D object.

Xperc isarea number giving the new size of the
object’s x dimension as a percentage of its
origina sizein that dimension. For example, a
value of 100.0 will retain the current size, while
200.0 would double the object’ s length in the x
dimension, and 50.0 would halveit.

yperc isarea number giving the new size of the
object’ sy dimension as a percentage of its
original sizein that dimension.

zperc isarea number giving the new size of the
object’s z dimension as a percentage of its
origina sizein that dimension.

TheprograminLISTING-31.7 createsaspherewith aradiusof 20units. Thesphere
isthen resized so that the x dimension is doubled and the z dimension reduced to
10 units. The new shape is then rotated about the y-axis. The user must press ESC
to terminate the program.

DarkBASIC Pro: 3D Primitives 775

LISTING-31.7 REM *** Set display resol ution ***
SET DI SPLAY MODE 1280, 1024, 32
Resizing an Object
REM *** Nake and position the sphere **
MAKE OBJECT SPHERE 1, 20

POSI TI ON OBJECT 1, 0,0, 200

REM *** Resize sphere ***
SCALE OBJECT 1, 200.0, 100.0,50.0

REM *** Rot ate shape ***
DO

TURN OBJECT RIGHT 1, 1.0
LOOP

REM *** End program ***
WAI T KEY
END

Activity 31.17
Typein and test the program in LISTING-31.6 (object3D09.dbpro).

Modify the program so that a coneis used in place of the sphere.

Showing and Hiding Objects

Any 3D object isimmediately visible from the moment it is created (assuming it’'s
withinview), but itispossibleto hide an object using the HIDE OBJECT statement,
making it reappear later using the SHOW OBJECT command.

TheHIDE OBJECT Statement

An object can be made invisible using the HIDE OBJECT statement which hasthe
format shown in FIG-31.39.

FIG-31.39
Statement
In the diagram:
objno isthe integer value previously assigned to the

3D object which isto be hidden.

The SHOW OBJECT Statement

An object which has been previously hidden can be made to reappear using the
SHOW OBJECT statement which has the format shown in FIG-31.40.

FIG-31.40
Statement —
In the diagram:
objno isthe integer value previously assigned to the

hidden 3D object which isto reappear.

776 DarkBASIC Pro: 3D Primitives

Theprogramin LISTING-31.8 rotates acube continually, hiding the cube when ‘b’
ispressed and showing it again when ‘s’ is pressed.

LISTING-31.8 REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
Hiding and Showing
Objects REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 20

PCSI TI ON OBJECT 1, 0,0, 200

REM *** Rot ate object ***
DO
PI TCH OBJECT UP 1, 1.0
REM *** Read key ***
ch$ = | NKEYS$()
REM *** |F its s - show cube ***

IF ch$ = *s”
SHOW OBJECT 1
ENDI F
REM *** |F its h - hide cube ***
IF ch$ = “h”
H DE OBJECT 1
ENDI F
LooP
REM *** End program ***
END
Activity 31.18

Typein and test the program given above (object3D10.dbpro).

The DELETE OBJECT Statement

When a 3D object is no longer required, its RAM space can be released using the
DELETE OBJECT statement which has the format shown in FIG-31.41.

FIG-31.41
Statement
In the diagram:
objno is an integer value specifying the ID of the 3D

object to be deleted.

The DELETE OBJECTS Statement

If we need to delete several objects at one time, then the most efficient way to do
this is to use the DELETE OBJECTS statement which has the format shown in

FIG-31.42.
FIG-31.42 —
s Jonseers] [55T L J5
OBJECTS Statement
In the diagram:
objnol isan integer value specifying the lowest ID of the
3D objects to be deleted.
objno2 isan integer value specifying the highest 1D of the
3D objects to be deleted.

DarkBASIC Pro: 3D Primitives 777

For example, if we needed to delete 10 3D objects with ID values ranging from 8
to 17, then we would use the statement:

DELETE OBJECTS 8, 17

Copying a 3D Object

We can create a copy of an existing 3D object in one of two ways, as described
below.

The CLONE OBJECT Statement

FI1G-31.43

The CLONE OBJECT
Statement

LISTING-31.9

Creating a Copy of a
3D Object

778

The CLONE OBJECT statement creates an independent copy of an existing 3D
object. The statement has the format shown in FIG-31.43.

N4
Im m 'JbJ“O‘J l I a Ubjnyzl
| AN | AN

In the diagram:
objnol isan integer value specifying the ID to be
assigned to the object being created.
objno2 isan integer value specifying the ID of the

existing object to be copied.

The program in LISTING-31.9 uses the CLONE OBJECT statement to create a
duplicate cube.

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Nake and position cube ***
MAKE OBJECT CUBE 1, 40

POSI TI ON OBJECT 1, - 40, 0, 100

REM *** Rot ate cube ***

WAI T KEY

XROTATE OBJECT 1 , -45

REM *** Copy cube ***

WAI T KEY

CLONE OBJECT 2,1

REM *** Position copy ***

POSI TI ON OBJECT 2, 40,0, 50

REM *** Del| ete original cube ***
WAI T KEY

DELETE OBJECT 1

REM *** End program ***

WAI T KEY

END

Activity 31.19
Typein and test the program given in LISTING-31.9 (object3D11.dbpro).

Isthe copied cube rotated to the same angle as the original ?

Isthe copied cube deleted when the original cube isremoved?

DarkBASIC Pro: 3D Primitives

The INSTANCE OBJECT Statement

A second way to duplicate an existing object is to use the INSTANCE OBJECT
statement. This statement has the format shown in FIG-31.44.

FIG-31.44

The INSTANCE INSTANCEI OBJECTI I objnol E I objno2
OBJECT Statement
In the diagram:
objnol isan integer value specifying the ID to be
assigned to the object being created.
objno2 isan integer value specifying the ID of the

existing object to be copied.

Although this may seem to havethe same affect asthe CLONE OBJECT statement,
in fact the two statements differ in how data about the copied object is held. When
CLONE OBJECT is used, the new object has its own independent data area; with
INSTANCE OBJECT the two objects share parts of the same data area. The
consequence of this is that objects created using INSTANCE OBJECT will
disappear if the original object from which they were created is deleted.

Activity 31.20

Modify your last program, replacing the CLONE OBJECT statement with a
INSTANCE OBJECT statement.

How does this change affect the operation of the program?

Change the DELETE OBJECT statement so that object 2, rather than object 1,
isdeleted. How does this affect the program?

Retrieving Data on 3D Objects

The OBJECT EXIST Statement

We can check that an object of a specified ID actually exists using the OBJECT
EXIST statement which has the format shown in FIG-31.45.

FIG-31.45
The OBJECT EXIST OBJECTI EXIST I E E
Statement | a—
integer
In the diagram:
objno isan integer specifying the ID of the object to be
checked.

If the object exists, 1 is returned, otherwise zero is returned.

DarkBASIC Pro: 3D Primitives 779

The OBJECT POSITION Statement

FIG-31.46

The OBJECT POSITION
Statement

The exact position of a 3D object's centre can be determined using the OBJECT
POSITION statement. Three variations of the statement exist, with each variation
returning one of the object's ordinates. The statement has the format shown in

FIG-31.46.
N4
|z R
| AN

real
In the diagram:
XY, Z One of these options should be chosen. Choose X
if the x-ordinate of the specified object isrequired,
Y for the y-ordinate, and Z for the z-ordinate.
objno is an integer value specifying the object whose

ordinate is to be returned.

For example, we could determine the position in space of object 1's centre using the
lines:

X = OBJECT POSI TION X(1)

y = OBJECT POSI TI ON Y(1)
z = OBJECT PCSITION Z(1)
PRINT "Object 1 has its centre at (",x,",",y,",",z,")"

The OBJECT VISIBLE Statement

FIG-31.47

The OBJECT VISIBLE
Statement

780

The OBJECT VISIBLE statement returns 1 if a specified 3D object is currently,
visible; if the object is hidden, the value zero is returned. The statement has the
format shown in FIG-31.47.

Je=E1 2R | [ez

integer
In the diagram:
objno is an integer value specifying the ID of the
object to be checked.

If the object is currently showing, 1 is returned, otherwise zero is returned.

DarkBASIC Pro: 3D Primitives

The OBJECT SIZE Statement

FIG-31.48

The OBJECT SIZE
Statement

The dimensions of a specified object can be determined using the OBJECT SIZE
statement. Like OBJECT POSITION, there are three variations available in this
statement, each returning one dimension of the object in question. The format for
this statement is given in FIG-31.48.

JE 2 E i ez

v

real

In the diagram:

XY, Z One of these options should be chosen. Choose X
if the width of the specified object is required,
Y for the height, and Z for the depth.

All three options can be omitted and the
statement will return an overall value for the size
of the 3D object.

objno isan integer value specifying the object whose
dimension isto be returned.

The value returned by the statement is real and, because of rounding errors, this
may be dightly out. For example, if we create a cube (object 1) 40 units in all
directions, then the statement

PRINT "Wdth ", OBJECT SIZE X(1)
will display the value 39.9999961853.

Also, the OBJECT SIZE (1) statement - with no referenceto any specific dimension
- gives an overall size based on al three dimensions.

Activity 31.21

Write a program (object3D12.dbpro) which creates a box of random size
(using limits 5 to 50) and then displays the box's width, height and depth.

The OBJECT ANGLE Statement

The angle to which an object has been rotated about any of its local axes can be
determined using the OBJECT ANGLE statement which has the format shown in
FIG-31.49.

DarkBASIC Pro: 3D Primitives 781

FIG-31.49

The OBJECT ANGLE
Statement

Joaser e | o | 115

A\
real
In the diagram:

XY, Z One of these options should be chosen. Choose X
if the rotation about the local x axisisrequired,
Y for rotation about the y-axis, and Z for the
rotation about the z-axis.

objno is an integer value specifying the object whose
rotation angle is to be returned.

Activity 31.22

Modify your previous program so that the box object is rotated by arandom
number of degrees about all three axes. Display the amount of rotation in each
case.

Controlling an Object's Rotation Using the M ouse

782

In the example that follows, we're going to make a cube face towards the mouse
pointer. As the user moves the mouse pointer about the screen, so the cube will
continually re-orientate itself to face the pointer.

Before looking at the code, we have one main obstacle to overcome. The mouse
pointer commands (MOUSE X () and MOUSE Y ()) use a 2D coordinate system
withtheoriginat thetop | eft corner of the screen; 3D objectsuseacoordinate system
inwhich the origin is (initially, at least) at the centre of the screen. To convert the
mouse's X ordinate readings to 3D space we need to use the line:

x3D = MOUSE X() - SCREEN W DTH()/2

They ordinate also needs to haveit's sign changed, since for the mouse the positive
section of the y-axisis down, while in 3D space the positive section of the y-axis
isup! We can solve thiswith the line:

y3D = - (MOUSE Y() - SCREEN HEI GHT()/2)

Of course, thereis no third dimension as far as the mouse pointer is concerned, so
we'll keep that set to zero.

We're now ready to describe the logic required by the program:

Create cube
Move cube backwards to reduce its apparent size
DO

DarkBASIC Pro: 3D Primitives

LISTING-31.10

Making a3D Object Face
the Mouse Pointer

Get mouse coordinates and convert to 3D space
Make cube point at these coordinates
LOOP

The code for the program is given in LISTING-31.10.

REM *** Set display resolution ***

SET DI SPLAY MODE 1280, 1024, 32

REM *** NMake and position cube ***

MAKE OBJECT CUBE 1, 40

PCSI TI ON OBJECT 1, 0, 0, 100

DO
REM *** Convert nouse 2D coords to 3D ***
x3D = MOUSEX() - SCREEN W DTH()/2
y3D = - (MOUSEY() - SCREEN HEI GHT()/2)
REM *** Re-orient cube ***
PO NT OBJECT 1, x3D, y3D, 0

LOOoP

REM *** End program ***

END

Activity 31.23
Typein and test the code given above (object3D13.dbpro).

Modify the program to use two spheres, set side-by-side, both of which should
face towards the mouse pointer.

Wireframe and Culling

The SET OBJECT WIREFRAME Statement

FI1G-31.50

The SET OBJECT
WIREFRAME Statement

LISTING-31.11

Switching Between
Normal and Wireframe
Mode

It is possible to show a 3D object in wireframe mode (which show only the edges
of the polygons that make up a shape) using the SET OBJECT WIREFRAME
statement which has the format shown in FIG-31.50.

N—d
MWM I/

In the diagram:
objno is an integer value identifying the object which
isto have its display mode altered.
mode isOor 1.
0 - solidmode
1 - wireframe mode

LISTING-31.11 demonstrates the use of this statement, switching between solid
and wireframe mode every time akey is pressed.

REM *** Set screen npde ***

SET DI SPLAY MODE 1280, 1024, 32

REM *** Nake and position cube ***
MAKE OBJECT CUBE 1, 40

POSI TI ON OBJECT 1, 25, 0, 100

REM *** Start in solid node ***

wire = 0 continued on next page

DarkBASIC Pro: 3D Primitives 783

LISTING-31.11 REM *** Rot ate cube ***

(continued) DO
o REM *** | F key pressed, switch node ***
Switching Betv_veen IF I NKEY$() <> "*
Normal and Wireframe wire=1- wire
Mode SET OBJECT WREFRAME 1, wire
ENDI F

PI TCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

Activity 31.24

Typein and test the program in LISTING-31.11 (object3D14.dbpro).

The SET OBJECT CULL Statement

Under normal circumstances, it isimpossible to see every part of a3D object at the
same time. The polygons that make up the hidden parts of an object are not drawn
by the computer. Obviously, this saves processing time and createsamorerealistic
effect. If we take asecond |ook at the previous program when running in wireframe
mode, we'll see that the polygons at the back of the cube are not drawn. This
elimination of hidden polygons is known as culling. Culling can be toggled on or
off using the SET OBJECT CULL statement which has the format shown in

FIG-31.51.
FIG-31.51
N—4
ey Jser s w5 =]
CULL Statement
In the diagram:
objno is an integer value identifying the object which
isto have its cull mode altered.
mode isOor1.
0 - culling off
1 - culingon
Activity 31.25

Modify your last program by adding the line
SET OBJECT CULL 1,0

immediately before the DO..LOOP structure. Notice that the hidden polygons
are now being drawn.

Modify the program again so that pressing the w key toggles between
wireframe and solid mode and that pressing c toggles between culling on and
culling off.

There's a slight problem when it comes to displaying cylinders and cones, as we
can see from the output produced by LISTING-31.12.

784 DarkBASIC Pro: 3D Primitives

LISTING-31.12

A Problem with Cones
and Cylinders

FIG-31.52

Hidden Surfaces on
Cones and Cylinders

REM *** Set screen node ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** NMake and position cone and cylinder ***
MAKE OBJECT CONE 1, 5
POSI TI ON OBJECT 1,-6,-5,0
XROTATE OBJECT 1, 45

MAKE OBJECT CYLINDER 2,5

POSI TI ON OBJECT 2, 6,-5,0

REM *** End program ***

WAI T KEY

END

Activity 31.26

Typein and test the program in LISTING-31.12 (object3D15.dbpro).

What problem occurs with both shapes?

Theinside surfaces of both shapes have not been drawn (see FIG-31.52).

The inside surfaces

of both shapes are not
drawn

But we can solve this problem by switching off culling, so that the hidden polygons
are drawn.

Activity 31.27

Modify your previous program so that culling is switched off for both the cone

and the cylinder.

Storage M ethods

When a 3D object is shown on screen, the coordinates of its vertices are stored in
memory in an area known as a vertex buffer. Normally, each object will have its
own vertex buffer. However, some video cards allow different objects to share
vertex buffers, other video cards don't. As a default, 3D objectsin DARKBASIC
Pro do not share vertex buffers - this ensures compatibility with the maximum
number of video cards. However, it is possible to force vertex buffer sharing and,
if your video card can handle this, improve the performance of your program.

The SET GLOBAL OBJECT CREATION Statement

To force vertex buffer sharing, we use the SET GLOBAL OBJECT CREATION
statement which has the format shown in FIG-31.53.

DarkBASIC Pro: 3D Primitives 785

FI1G-31.53

The SET GLOBAL
OBJECT CREATION
Statement

SET || | GLOBAL | || OBJECT | || CREATION

In the diagram:

mode Oor 1. 0- no vertex buffer sharing (thisisthe
default setting); 1 - vertex buffer sharing allowed.

Evenif your own video card does allow vertex buffer sharing, your customer's may
not, o it's probably best to ignore this option.

Summary

786

A point in 3D spaceis specified using x, y, and z coordinates.
There are three main planesin 3D space - XY, YZ, and XZ.

The computer screen uses a positive-up, negative-down y-axis when operating
in 3D mode. Thisis the opposite from the 2D settings.

The positive z-axis travels away from the viewer "into" the screen.
A point in spaceis known as a vertex.

A set of vertices, when joined, form a polygon.

The join between two verticesis known as an edge.

Basic 3D shapes are known as primitives.

When first created a 3D object hasit centre position at the origin.
The x and y axesintersect at the centre of the screen at start-up.
Use the MAKE OBJECT CUBE to create a cube.

Use MAKE OBJECT BOX to create a cuboid.

Use MAKE OBJECT SPHERE to create a sphere.

The number of polygons used can be specified when creating a sphere.
Use MAKE OBJECT CYLINDER to create a cylinder.

Use MAKE OBJECT CONE to create a cone.

Use MAKE OBJECT PLAIN to create aplane.

A planeisinitially oriented asan XY plane.

Use MAKE OBJECT TRIANGLE to create atriangle.

Theinitial position of atriangle is determined by the vertices given.

Use POSITION OBJECT to place the centre of an object at a new location.

DarkBASIC Pro: 3D Primitives

® Use MOVE OBJECT to move an object along the x or y axis.
® Every 3D object hasitsown local axeswith the origin at the centre of the object.

® Usethe XROTATE, YROTATE or ZROTATE OBJECT statementsto rotate an
object to a specific angle about one of itslocal axes.

® UseROTATE OBJECT torotate an object to specific anglesabout all threelocal
axes at the sametime.

® Use PITCH, TURN or ROLL OBJECT statements to rotate an object by a
number of degrees around agiven axis.

® Use POINT OBJECT to make an object face towards a specified point.

® Use MOVE OBJECT distance to move the object a specified number of units
in the direction in which an object is pointing.

® Use FIX OBJECT PIVOT to reset an object's local axes to be in line with the
global axes.

® Use SCALE OBJECT to change the dimensions of an object.

® UseHIDE OBJECT to make an object invisible.

® Use SHOW OBJECT to make an invisible object reappear.

® Use DELETE OBJECT to erase an object from RAM.

® Use DELETE OBJECTSto erase agroup og objects from RAM.

® Use CLONE OBJECT to make an independent copy of an existing object.
® Use INSTANCE OBJECT to create a dependent copy of an existing object.
® Use OBJECT EXIST to check if a specified object exists.

® Use OBJECT VISIBLE to check if aspecified object isvisible.

® UseOBJECT POSITION to determinethe position in space of an object's centre.
® Use OBJECT SIZE to determine the dimensions of a specified object.

® Use OBJECT ANGLE to determine the current angle of rotation a specified
object has about its local axes.

® Use SET OBJECT WIREFRAME todisplay a3D object in wireframe or normal
mode.

® Use SET OBJECT CULL totoggle culling for a specified 3D object.

® Use SET GLOBAL OBJECT CREATION to enable/disable vertex buffer
sharing.

DarkBASIC Pro: 3D Primitives 787

Mereging Primitives

I ntroduction

DarkBASIC Pro version 1.058 introduced statements which allow usto create new
shapes by merging two primitives. There are three basic options available:

Create the new shape from the combination of the two original shapes - known as
union (see FIG-31.54).

FIG-31.54
Shape Union
union
Shape 1 Shape 2 Resulting Shape
Create the new shape by removing the overlapping section of shape 2 from shape
1 - known as difference (see FIG-31.55).
FIG-31.55
Shape Difference
difference
Shape 1 Shape 2 Resulting Shape
Create the new shape from the overlapping area between shape 1 and shape 2 -
known as inter section (see FIG-56).
FIG-31.56

Shape Intersection

intersection

°

Shape 1 Shape 2 Resulting Shape

The Statements

When we join two shapes using the merge statements, the resulting shape is stored
in aformat knows as Constructive Solid Geometry (CSG). We need not concern
ourselves with the details of thisformat, and it is only mentioned here so that you
know the meaning of the initials used in the statements.

The PERFORM CSG UNION Statement

We can create a new shape from the union of two existing shapes using the
PERFORM CSG UNION statement which has the format shown in FIG-31.57.

788 DarkBASIC Pro: 3D Primitives

FIG-31.57

The PERFORM CSG
UNION Statement

LISTING-31.13

Creating a New 3D Shape
using Union

This program positions
the camerawhich is
responsible for the picture
we see on the screen.

Full details of camera
usage are covered in
Chapter 33.

N—d
m m l/

In the diagram:
objnol isan integer value specifying the ID of the first
3D object to be used in the union.
objno2 is an integer value specifying the ID of the second

3D object to be used in the union.

The statement modifies the shape of objnol without affecting objno2. Normally,

the programmer would delete the second object once the union is compl eted.

The program in LISTING-31.13 demonstrates the union of a cube and abox. After
the box has been deleted, the resulting shape is then rotated about itslocal x and y

axes.

REM *** Set screen resol ution and background ***
SET DI SPLAY MCDE 1280, 1024, 32

COLOR BACKDRCP 0

BACKDROP ON

REM *** Position canmera ***
AUTOCAM OFF
POSI TI ON CAMERA 0, 0, - 100

REM *** Create two shapes used ***
MAKE OBJECT CUBE 1, 40

MAKE OBJECT BOX 2, 10, 30, 10

POSI TI ON OBJECT 2,0, 15,0

REM *** | et viewer see position of shapes ***
WAI T KEY

REM *** Uni on shapes ***
PERFORM CSG UNION 1, 2

REM *** Renpve object 2 ***
DELETE OBJECT 2

REM *** Rot ate new shape ***
DO

TURN OBJECT LEFT 1,1.0

PI TCH OBJECT UP 1,1.0
LOOP

REM *** End program ***
END

Activity 31.28

Try changing the second object to a sphere of diameter 10 and change the
POSITION OBJECT statement to read

PCSI TION OBJECT 2, 0, 25, O

Typein and test the program given in LISTING-31.13 (object3D16.dbpro).

DarkBASIC Pro: 3D Primitives

789

Asyou'vejust discovered, the UNION statement only works predi ctably with cubes
and boxes. Other shapes give unpredictable results (although the coneis close).

The PERFORM CSG DIFFERENCE Statement

FIG-31.58

The PERFORM CSG
DIFFERENCE Statement

The PERFORM CSG DIFFERENCE statement removes from object 1 the volume
it shares in common with object 2. The statement has the format shown in
FIG-31.58.

N4
mmm l/

In the diagram:
objnol isan integer value specifying the ID of the first
3D object to be used in the difference operation.
objno2 is an integer value specifying the ID of the second

3D object to be used in the difference operation.

As before, the second object is unaffected by the operation and would normally be
deleted. Also, we are again restricted to cubes and boxes if we are to obtain
consistent resullts.

Activity 31.29
Restore your last project to its original code (as shown in LISTING-31.13).

Change the union operation to a difference operation and observe the new
shape created.

Modify the width and depth of the box to be 35.

The PERFORM CSG INTERSECTION Statement

FIG-31.59
The PERFORM CSG

INTERSECTION
Statement

790

The PERFORM CSG INTERSECTION statement does not perform intersection as
defined at the beginning of this chapter, but it does create a different shape from
that produced by the PERFORM CSG DIFFERENCE statement and so is worth
looking at. The statement has the format shown in FIG-31.59.

N—4
m M l/

In the diagram:
objnol isan integer value specifying the ID of the first
3D object to be used in the intersection operation.
objno2 is an integer value specifying the ID of the second

3D object to be used in the intersection operation.

Again, the second object would normally be deleted and we are restricted to cubes
and boxes if we are to obtain predictable results.

DarkBASIC Pro: 3D Primitives

Activity 31.30

Modify your previous program and determine how the shape created by the
PERFORM CSG INTERSECTION differs from that produced by PERFORM
CSG DIFFERENCE.

Summary

® Cubes and boxes can be merged to create new shapes.

® Use PERFORM CSG UNION to modify a shape so that it becomes the
amalgamation of the original two shapes.

® Use PERFORM CSG DIFFERENCE to modify a shape so that the volume it
shares with a second shape is removed.

® Use PERFORM CSG INTERSECTION to modify a shape to remove polygons
which touch the second shape.

DarkBASIC Pro: 3D Primitives 791

solutions

Activity 31.1

No solution required.

Activity 31.2

1.

REM *** Set display and backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

COLOR BACKDROP 0

BACKDROP ON

REM *** Make the sphere ***

MAKE OBJECT SPHERE 1, 10

REM *** End program ***

WAI T KEY

END

2.

REM *** Set display and backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

COLOR BACKDROP 0

BACKDROP ON

REM *** Make the sphere ***

MAKE OBJECT SPHERE 1, 10, 40, 40

REM *** End program ***

WAI T KEY

END

Activity 31.3

1.

REM *** Set display and backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

COLOR BACKDROP 0O

BACKDROP ON

REM *** Make the cylinder ***

MAKE OBJECT CYLI NDER 1,5

REM *** End program ***

WAI T KEY

END

2.

REM *** Set display and backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

COLOR BACKDROP 0

BACKDROP ON

REM *** Make the cone ***

MAKE OBJECT CONE 1,5

REM *** End program ***

WAI T KEY

END

Activity 31.4

792

REM *** Set display & backdrop ***
SET DI SPLAY MODE 1280, 1024, 32
COLOR BACKDROP 0

BACKDROP ON

REM *** Make the cube ***

MAKE OBJECT CUBE 1, 10

REM *** Cube to (50,0,0) after key
press ***

WAI T KEY

POSI TI ON OBJECT 1,9,0,0

REM *** Mpve the cube backwards ***
VWAI T KEY

PCSI TI ON OBJECT 1, 9,0, 30

REM *** End program ***

WAI T KEY

END

Activity 31.5

REM *** Set display & backdrop ***
SET DI SPLAY MODE 1280, 1024, 32
COLOR BACKDROP 0

BACKDROP ON

REM *** Make the set of objects ***
MAKE OBJECT CUBE 1,4

MAKE OBJECT BOX 2, 10, 15,5

MAKE OBJECT SPHERE 3, 7

MAKE OBJECT CYLI NDER 4, 12

MAKE OBJECT CONE 5, 12

REM *** Cube to (9,0,0) after key
press ***

VWAI T KEY

POSI TI ON OBJECT 1,9,0,0

REM *** Box to (-60,0,100) ***

WAI T KEY

POSI TI ON OBJECT 2, - 60, 0, 100

REM *** Sphere to (-30,-40,50) ***
VWAI T KEY

PCSI TI ON OBJECT 3, - 30, - 40, 50

REM *** Cylinder to (25,0,120) ***
VWAI T KEY

PCSI TI ON OBJECT 4, 25, 0, 120

REM *** Cone to (0, 25,100) ***

WAI T KEY

PGSI TI ON OBJECT 5, 0, 25, 100

REM *** End program ***

WAI T KEY

END

Activity 31.6

REM *** Set display & backdrop ***
SET DI SPLAY MODE 1280, 1024, 32
COLOR BACKDROP 0

BACKDROP ON

REM *** Make the set of objects ***
MAKE OBJECT CUBE 1, 10

REM *** Cube to(9,0,100) after key
press ***

WAI T KEY

PGCSI TI ON OBJECT 1, 9, 0, 100

REM *** Cube 31.3 units to the right
* % x

WAI T KEY

MOVE OBJECT RIGHT 1, 31.3

REM *** End program ***

WAI T KEY

END

Activity 31.7

Version 1
REM *** Set display & backdrop
SET DI SPLAY MODE 1280, 1024, 32
COLOR BACKDROP 0
BACKDROP ON
REM *** Make the set of objects ***
MAKE OBJECT CUBE 1, 40
REM ***Cube to(0, 0, 100) after key
press ***
POSI TI ON OBJECT 1, 0, 0, 100
REM *** Rotate cube ***
FOR degree = 1 TO 360
XROTATE OBJECT 1, degree
VAIT 1
NEXT degr ee
REM *** End program ***
VWAI T KEY
END

DarkBASIC Pro: 3D Primitives

Version 2 REM *** Set screen resol ution ***

REM *** Set display & backdrop *** SET DI SPLAY MODE 1280, 1024, 32
SET DI SPLAY MODE 1280, 1024, 32 REM *** Create and position cube ***
COLOR BACKDROP 0 MAKE OBJECT CUBE 1, 40
BACKDROP ON PCOSI TI ON OBJECT 1, 0, 0, 200
REM *** Make the set of objects *** REM *** Revol ve the cube ***
MAKE OBJECT CUBE 1, 40 FOR ¢ = 1 TO 360
REM ***Cube to(0, 0, 100) after key press *** ROLL OBJECT LEFT 1, 1.0
PCSI TI ON OBJECT 1, 0, 0, 100 WAIT 10
REM *** Rotate cube *** NEXT ¢
FOR degree = 359 TO O STEP -1 REM *** End program ***
XROTATE OBJECT 1, degree VAI T KEY
VAIT 1 END
NEXT degree
REM *** End program *** o
WAI T KEY Activity 31.13
END

REM *** Set display & backdrop ***
SET DI SPLAY MODE 1280, 1024, 32

Activity 31.8 COLOR BACKDRCP 0
BACKDROP ON
No solution required. REM *** Make the set of objects ***

MAKE OBJECT CUBE 1, 40
REM ***Cube to(0,0,100) after key press ***

1Vvi WAI T KEY
ACtIVIty 319 POSI TI ON OBJECT 1, 0, 0, 100
REM ** Set display node *** REM *** point cube at (-20,17,-10)***
SET DI SPLAY MODE 1280, 1024, 32 VWAI T KEY
REM *** Create and position cube *** PO NT OBJECT 1, -20,17,-10
MAKE OBJECT CUBE 1, 40 REM *** End program ***
PCSI TI ON OBJECT 1, 0, 0, 200 WAI T KEY
REM *** Rotate cube 1 degree at a time *** END

REM *** around all three axes ***
FOR angle = 1 TO 360

ROTATE OBJECT 1, angl e, angl e, angl e Activity 31.14

VWAI T 10
NEXT angl e The changes should cause the cube should move in the
REM *** End program *** direction it is pointing.
VWAI T KEY
END o

Activity 31.15
Activity 31.10 No solution required.

REM *** Set screen resol ution ***
SET DI SPLAY MODE 1280, 1024, 32 ACthIty 31.16

REM *** Create and position cube ***
MAKE OBJECT CUBE 1, 40

POSI TI ON OBJECT 1, 0, 0, 200

REM *** Revol ve the cube ***

The cube rotates in the same direction on both occasions.

FOR ¢ = 1 TO 360 ivi

PI TCH OBJECT UP 1, -1.0 Activity 31.17

WAIT 10 REM *** Set display resolution ***
NEXT ¢ SET DI SPLAY MODE 1280, 1024, 32
REM *** End program *** REM *** Make and position the cone ***
WAI T KEY MAKE OBJECT CONE 1, 20
END PCSI TI ON OBJECT 1, 0,0, 200

REM *** Resi ze cone ***
SCALE OBJECT 1, 200.0, 100.0, 50.0

Activity 31.11 REM *** Rotate shape ***
DO
REM *** Set screen resol ution *** TURN OBJECT RIGHT 1, 1.0
SET DI SPLAY MODE 1280, 1024, 32 LOoP
REM *** Create and position cube *** REM *** End program ***
MAKE OBJECT CUBE 1, 40 END

POSI TI ON OBJECT 1, 0, 0, 200
REM *** Revol ve the cube ***

FOR ¢ = 1 TO 360 i
TURN OBJECT RIGHT 1, 1.0 Activity 31.18
WAI T 10 . ;
NEXT © No solution required.
REM *** End program ***
WAI T KEY s
END Activity 31.19
The second cube is created with the same rotation.
Activity 31.12 'ggtzt(;%pied cube does not disappear when the original is

DarkBASIC Pro: 3D Primitives 793

Activity 31.20

The duplicated cubeis not rotated, but it is removed when
the original cubeis deleted.

When the second cube is deleted, the first cubeis
unaffected.

Activity 31.21

REM *** Set display resolution ***

SET DI SPLAY MODE 1280, 1024, 32

REM *** Seed random nunber generator ***
RANDOM ZE TI MER()

REM *** Make and position the box ***
MAKE OBJECT BOX 1, RND(45)+5, RND(45) +5,
GRND(45) +5

POSI TI ON OBJECT 1, 0,0,0

REM *** Get di nensions of box ***

wi dt h# = OBJECT SIZE X(1)

hei ght# = OBJECT Sl ZE Y(1)

depth# = OBJECT SI ZE Z(1)

REM *** Di spl ay di nensions ***

DO
SET CURSOR 10, 20
PRINT "Wdth : ", wdth# " Hei ght ",
Lhei ght #, Depth : ", depth#

LOoP

REM *** End program ***

WAI T KEY

END

Activity 31.22

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Seed random nunber generator
RANDOM ZE TI MER()

* ko

REM *** NMake and position the box ***
MAKE OBJECT BOX 1, RND(45) +5, RND(45) +5,
ARND(45) +5

POSI TI ON OBJECT 1, 0,0,0
REM *** Rotate box at random ***
ROTATE OBJECT 1, RND(359), RND(359), RND(359)
REM *** Get di nensions of box ***
wi dt h# = OBJECT SI ZE X(1)
hei ght# = OBJECT SI ZE Y(1)
dept h# = OBJECT SIZE Z(1)
REM *** Get rotations of box ***
Xx_axi s_rotation OBJECT ANGLE X(1)
y_axis_rotation OBJECT ANGLE Y(1)
z_axis_rotation OBJECT ANGLE Z(1)
REM *** Di splay details ***
DO
SET CURSOR 10, 20
PRINT "Wdth : ", w dt h#,
%, hei ght#, Depth :
SET CURSOR 10, 40
PRI NT "X-axis :

Hei ght
", dept h#

", x_axis_rotation,

L' y-axis : ",y_axis_rotation,
Lt z-axis ", z_axis_rotation

LOCP

REM *** End program ***

VWAI T KEY

END

Activity 31.23
REM *** Set display resolution ***

SET DI SPLAY MODE 1280, 1024, 32

REM *** Make and position spheres ***
MAKE OBJECT SPHERE 1, 40

POSI TI ON OBJECT 1, 25, 0, 100

MAKE OBJECT SPHERE 2, 40

794

PCSI TI ON OBJECT 2, -25,0, 100

DO
x3D = MOUSEX() - SCREEN W DTH()/2
y3D = - (MOUSEY() - SCREEN HEI GHT()/2)
PO NT OBJECT 1, x3D,y3D, 0
PO NT OBJECT 2, x3D,y3D, 0

LOooP

REM *** End program ***

END

Activity 31.24

No solution required.

Activity 31.25

REM *** Set screen node ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** NMake and position cube ***
MAKE OBJECT CUBE 1, 40
PCSI TI ON OBJECT 1, 25, 0, 100
REM *** Start in solid and culling on ***
wre
cull
REM *** Rotate cube ***
DO
REM *** | F key pressed,
IF INKEY$() ="w'

=0
=1

swi tch node ***

wire=1- wre
SET OBJECT WREFRAME 1, wire
ENDI F
I F I NKEY$()="c"
cull =1 - cull
SET OBJECT CULL 1, cull
ENDI F
PI TCH OBJECT DOW 1, 1.0
TURN OBJECT LEFT 1, 1.0
LOoOP
REM *** End program ***
END
Activity 31.26

The inside surfaces of both shapes are not drawn.

Activity 31.27

REM *** Set screen node ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Make & position cone and cylinder ***
MAKE OBJECT CONE 1, 5

PCSI TI ON OBJECT 1,-6,-5,0

XROTATE OBJECT 1, 45

MAKE OBJECT CYLI NDER 2,5

POSI TI ON OBJECT 2, 6,-5,0

REM ** Culling off for both objects ***
SET OBJECT CULL 1,0
SET OBJECT CULL 2,0

REM * * *
WAI T KEY
END

End program ***

Activity 31.28

In fact, the UNION operation only works predictably with
cubes and boxes.

DarkBASIC Pro: 3D Primitives

Activity 31.29

REM *** Set screen resol ution and background ***
SET DI SPLAY MODE 1280, 1024, 32
COLOR BACKDROP 0
BACKDROP ON
REM *** Position canera ***
AUTOCAM OFF
PCOSI TI ON CAMERA 0, 0, - 100
REM *** Create two shapes used ***
MAKE OBJECT CUBE 1, 40
MAKE OBJECT BOX 2, 10, 30, 10
PCSI TI ON OBJECT 2,0, 15,0
REM *** |et viewer see position of shapes ***
WAI T KEY
REM *** Difference shapes ***
PERFORM CSG DI FFERENCE 1, 2
REM *** Renpve object 2 ***
DELETE OBJECT 2
REM *** Rot ate new shape ***
DO

TURN OBJECT LEFT 1,1.0

PI TCH OBJECT UP 1,1.0
LOCP
REM *** End program ***
END

Activity 31.30

REM *** Set screen resol uti on and background ***
SET DI SPLAY MODE 1280, 1024, 32
COLOR BACKDRCP 0
BACKDROP ON
REM *** Position canera ***
AUTOCAM OFF
PGSI TI ON CAMVERA 0, 0, - 100
REM *** Create two shapes used ***
MAKE OBJECT CUBE 1, 40
MAKE OBJECT BOX 2, 10, 30, 10
PCSI TI ON OBJECT 2,0, 15,0
REM *** Let viewer see position of shapes ***
VWAI T KEY
REM *** | ntersection shapes ***
PERFORM CSG | NTERSETI ON 1, 2
REM *** Renpve object 2 ***
DELETE OBJECT 2
REM *** Rot ate new shape ***
DO

TURN OBJECT LEFT 1,1.0

PI TCH OBJECT UP 1,1.0
LOCP
REM *** End program ***
END

DarkBASIC Pro: 3D Primitives 795

796 DarkBASIC Pro: 3D Primitives

oR

Tenkusiag

Applying a Texture Image to a 3D Object
Colouring a 3D Object
Loading a Texture Image
Mipmaps

Offsetting a Texture
Overlaying Textures
Seamless Tiling
Semi-Transparent 3D Object
Sky Spheres

Texture Mapping Options
Texture Transparency

Tiling

Video Texturing

DarkBASIC Pro: Texturing 797

Adding Texture

I ntroduction

The 3D shapeswe have created so far ook rather bland in white and shades of grey.
To make things more interesting we can wrap an image around a 3D shape and
thereby enhance its visual impact.

Thisis known as adding texture to the 3D object. An example of atextured cube
isshownin FIG-32.1.

FIG-32.1

A Textured Cube

L oading a Texture Image

We need to start by loading the picture we intend to use to texture the 3D object
into an image object with a statement such as:

LOAD | MAGE "textureOl. bnp", 1

After this has been done, we can transfer the image to the surface of one or more
3D objects.

Using thelmage asa Texture

The TEXTURE OBJECT Statement

A loaded image can become the texture of a3D object by executing the TEXTURE
OBJECT statement which has the format shown in FIG-32.2.

FIG-32.2
OBJECT Statement — —
In the diagram:
objno isan integer value specifying the object to which
the texture is to be applied.
imgno isan integer value specifying the image to be

used as the texture.

798 DarkBASIC Pro: Texturing

For example, we could apply image 1 to object 2 using the line

TEXTURE OBJECT 2,1

The program in LISTING-32.1 demonstrates how a cube can be textured with a
wood image to create the impression of awooden crate.

LISTING-32.1

REM *** Set display resolution ***

) SET DI SPLAY MODE 1280, 1024, 32
Adding Textureto an

Object REM *** Load texture image ***

LOAD | MAGE "t extureWod.jpg", 1

REM *** Create cube ***
MAKE OBJECT CUBE 1, 40

REM *** Add texture to cube ***
TEXTURE OBJECT 1,1

REM *** Position cube ***
PCSI TI ON OBJECT 1, 25, 0, 100

REM *** Rotate cube continuously ***
DO

TURN OBJECT LEFT 1, 1.0
LOOP

REM *** End program ***
END

Activity 32.1
Typein and test the program in LISTING-32.1 (texture01.dbpro).

Change the texture image to eyecol .bmp.

Wecan seequite clearly from theresults of thelast Activity that theimageisapplied
separately to each face of the cube. For other shapes, the image may be applied
differently.

Activity 32.2

Modify your last program so that eyecol.bmp is applied as a texture to a box,
cylinder, cone and sphere (any dimensions will do). Create a separate program
for each shape.

How often is the image repeated on each of the shapes?

Mipmaps

Texturing a 3D object can be quite time consuming. It may be easy enough to map
a 300 by 300 pixel image onto a flat surface which occupies exactly 300 by 300
pixels on the screen, but if the 3D object moves off into the distance, the computer
has to work much harder to map the same 300 by 300 image onto an object which
now occupies just 23 by 23 pixels on the screen.

To helpwith thisproblem DarkBASIC Pro createsmorethan one copy of any image
that isloaded, with each copy being exactly half the size of thelast (see FIG-32.3).

DarkBASIC Pro: Texturing 799

FIG-32.3

An Image with Added
Mipmaps

LISTING-32.2

Mipmapsin Action

As atextured 3D object becomes smaller on the screen, the version of the image
used to texture that object changes from the the largest to the smallest.

The program in LISTING-32.2 demonstrates this effect.

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** | oad texture inmage ***
LOAD | MAGE "eyecol . bnp", 1

REM *** Nake cube ***

MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1

PCSI TI ON OBJECT 1, 25, 0, 100

REM *** Nove cube away from viewer ***
DO

POSI TI ON OBJECT 1, 25, 0, OBJECT PCSI TI ON Z(1) +10
LOCOP

REM *** End program ***
END

Activity 32.3
Typein and test the program in LISTING-32.2 (texture02.dbpro).
The effect isafairly subtle one. Look closely at the image on the cube as it

moves away from your viewpoint. Y ou should see it become less distinct as it
getssmaller.

The LOAD IMAGE Statement Again

FIG-32.4

The LOAD IMAGE
Statement

800

We met the LOAD IMAGE statement back in Chapter 20 when we created image
objects which were then loaded into sprite objects. But the LOAD IMAGE
statement has an expanded form which alows us to dictate whether mipmaps are
to be created or not. This version of LOAD IMAGE has the format shown in

FIG-32.4.
JEZ 2 | (B | (e |

In the diagram:

filename is astring specifying the name of thefile to be
loaded.

DarkBASIC Pro: Texturing

imgno isan integer specifying the ID to be alocated to
the image object being created.

tflag isan integer value specifying how theimageis
to be stored.
0 - mipmapsare created
1 - nomipmapsare created
2 - loadstheimagein asacubemap
texture (see the chapter on shaders)

When animageisloaded without mipmaps, any object using that image asatexture
must continue to use the original image even when the 3D object is greatly reduced
in size on the screen.

Activity 32.4

Modify your last program so that no mipmaps are used. To do this change the
LOAD IMAGE lineto read:

LOAD | MAGE "eyecol . bnp", 1,1

How does the texture on the cube differ in this program from the earlier
version?

Tiling

In the next example we'll create the floor of a dungeon by texturing a plane using
a cobblestone image.

The program uses the following logic:

Load cobblestone image

Create large plane

Rotate plane to be horizontal

Texture plane using the cobblestone image

The program itself isgiven in LISTING-32.3.

LISTING-32.3

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** |oad texture inmge ***

LOAD | MAGE "stonetile3.jpg",1

REM *** Create | arge plane ***

MAKE OBJECT PLAIN 1,400, 400

REM *** Rotate plane to horizontal ***
XROTATE OBJECT 1, 90

REM *** Texture plane ***

TEXTURE OBJECT 1,1

Creating a Floor Texture

REM *** End program ***
VAI T KEY
END

Activity 32.5

Typein and test the program in LISTING-32.3 (texture03.dbpro).

DarkBASIC Pro: Texturing 801

The screen dump in FIG-32.5 highlights the problem with the floor - the image has
stretched over thewhole plane giving afloor that containsonly afew unrealistically
large blocks rather than hundreds of smaller ones.

FIG-32.5

Floor Texturing

One way to solve the problem would be to use an image which actually shows the
hundreds of blocks that we need to create a realistic floor. However, this may not
be possible and the image would certainly haveto be largeif the visuals are to look
convincing as a character moves over the floor.

A second option is to make the texture image repeat itself several times over the
surface of the plane. This, for rather obvious reasons, is known as tiling.

The SCALE OBJECT TEXTURE Statement

Any image employed as a texture uses a UV coordinate system with the top left
being point (0,0) and the bottom right (1,1) no matter what the actual size of the
image is (see FIG-32.6).

FIG-32.6 00) (1.0)

The UV Coordinate | I | : :

System used by a Texture

Image

oy Wy

When mapped to a flat plane, the image spreads itself over the object with point
(0,0) of the image mapping to the top-left corner of the plane and point (1,1) to the
bottom-right corner (see FIG-32.7).

FIG-32.7 0.0)_ 7 exturmage

The Default Mapping of : S b

an Imageto aPlane

802 DarkBASIC Pro: Texturing

FIG-32.8
The Effects of Using

SCALE OBJECT
TEXTURE

FI1G-32.9

The SCALE OBJECT
TEXTURE Statement

LISTING-32.4

Changing the Texture's
Scaling

Using the SCALE OBJECT TEXTURE statement, we can adjust this mapping
making only a part of the image stretch over the whole object, or have the image
duplicate itself several times creating atiled effect as shown in FIG-32.8.

- C—

o A— u.-a_--:m == oy - -
Part of the Image Used The Image Duplicated to Creat
as Texture a Tiled Effect

The SCALE OBJECT TEXTURE statement has the format shown in FIG-32.9.

In the diagram:

objno is an integer value specifying the object to which
the texture scaling is to be applied.

Uscale isarea number specifying the multiplication
factor along the U axis. Values less than 1 will
result in only part of the image being used.
Values greater than 1 will result in duplication
of theimage over the 3D object.

Vscale isarea number specifying the multiplication

factor along the V axis. Values less than 1 will
result in only part of the image being used.
Values greater than 1 will result in duplication
of theimage over the 3D object.

Thefirst example shown in FIG-32.8 was created using the line:
SCALE OBJECT TEXTURE 1, 0.5, 0.5

while the second example was produced using:
SCALE OBJECT TEXTURE 1, 5.0, 5.0

The program in LISTING-32.4 demonstrates the effect of texture scaling by
applying cobblestones texture repeated 10 times in each direction to the plane.

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** | oad texture inmage ***
LOAD | MAGE "stonetile3.jpg",1

REM *** Create and position plain ***
MAKE OBJECT PLAIN 1, 400, 400
XROTATE OBJECT 1, -90

REM *** Texture plain ***

TEXTURE OBJECT 1,1

REM *** Scal e texture ***

SCALE OBJECT TEXTURE 1, 10.0, 10.0
REM *** End program ***

WAI T KEY

END

DarkBASIC Pro: Texturing 803

Activity 32.6
Typein and test the program given in LISTING-32.4 (texture04.dbpro).

Modify the scaling factors to each of the following settings and observe the
results:

Uscale Vscale

50 50
20 20
05 05
50 10
1.0 5.0

Change the 3D object used in your program from a plane to a sphere and retry
each of the settings given above.

Scaling a texture image in this way affects the image itself, so there is no way to
return to the original image settings within a program.

Seamless Tiling

FIG-32.10

A Visible Join Between
Tiles

804

For tiling to be convincing, the ends of the repeating image must butt together
without too obvious ajoin.

If westart with asimple picture and useit asatiled texture (as shown in FI G-32.10)
we get a disappointing effect in which the edge of each imagetileisvery obvious.

To avoid this, we need to modify the image using a paint package such as Paint
Shop Pro or Photoshop.

The stages involved are shown in FIG-32.11.

DarkBASIC Pro: Texturing

FIG-32.11

Creating an Image for
Seamless Tiling

Of coursg, itisequaly
possible to copy the
right edge areato the left
side and the top to the
bottom.

Y ou should choose
whatever combinations
suit theimagein
question.

T st # 1 phbpmes)

2
The main image has been "\
toned down to emphasise
the selected area

Copy selected area, mirror it,
paint program. and move it to the right edge.

Erase parts of the copy to make
it merge with the main image.

Repeat the process, copying The image can now be tiled
a bottom section to the top. seamlessly.

It takes abit of practice to achieve good results when creating atexture image, but
the results can be worth it.

Even when an image is not tiled, we can still have a problem with seams. For
example, when the image eyecol.bmp is applied as a texture to a sphere, the join
between the left and right edges of the image is quite apparent at the back of the
sphere, while the top and bottom edges are squeezed into single points at the two
"poles’.

Activity 32.7

Attempt to modify eyecol.bmp (creating a new file named seamlesseye.bmp)
to give a seamless effect when textured onto a sphere.

Write a short program (act3207.dbpro) which applies the new file to a sphere
and then rotates the sphere continuously about its local y-axis.

Video Texture

Itiseven possibleto useavideo clip asasurfacetexture. To do thiswe need to start
by loading up avideo with an instruction such as:

LOAD ANI MATI ON "nv1. npg", 1

ThePLAY ANIMATION TO IMAGE Statement

Now we need to transfer the video to an image object and this is done using the
PLAY ANIMATION TO IMAGE statement which has the format shown in
FIG-32.12.

DarkBASIC Pro: Texturing 805

FIG-32.12

The PLAY ANIMATION TO IMAGE Statement

N—d N4 N—d N4 N4
= | o e [e [1
| AN N | AR N

In the diagram:
varea isan integer value specifying the video that isto
be copied to an image area.
imgno isan integer specifying the image areato which
the video isto be copied.
x1,y1,x2,y2 are the coordinates for the top-left and bottom right

space which the video is to occupy.

The size of the play area (as set by x1, y1, x2, y2) affects the quality of the image
when it appears on the 3D object; use too small a set of values and the video will
be heavily pixellated; use too large aset of values and displaying the video will put
too great aload on the processor/video card and slow the whole thing down.

Once the video has been transferred to the image object, we can then use theimage
to texture a 3D object in the usual manner. LISTING-32.5 demonstrates the effect
by placing avideo on arotating cube.

LISTING-32.5 REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
UsingaVideo asa
Texture REM *** | oad video ***
LOAD ANI MATION "lion. npg", 1

REM *** Transfer video to inmage ***
PLAY ANI MATION TO | MAGE 1, 1,0, 0, 200, 200

REM *** Create cube and texture with video ***
MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1

REM *** Nove cube away from viewer ***
POSI TI ON OBJECT 1, 0, 0, 100

REM *** Rot ate cube ***
DO
TURN OBJECT LEFT 1,1.0
PI TCH OBJECT DOMWN 1, 1.0
LOOP

REM *** End program ***
END

Activity 32.8
Typein and test the program given in LISTING-32.5 (texture05.dbpro).
Modify the program to use very low values for the bottom right corner of the

video (i.e. 10,10) and very high values (i.e. 1000,1000). What affect do these
changes have on the final result?

806 DarkBASIC Pro: Texturing

Other Texture Effects

The SET OBJECT TEXTURE Statement

FIG-32.13

The SET OBJECT
TEXTURE Statement

FI1G-32.14

The Effects of Using
Different tmode Settings

LISTING-32.6

Using the SET OBJECT
TEXTURE Statement

An alternative way to achieve a seamless tiled texture is to use the SET OBJECT
TEXTURE statement that adjusts the way in which each copy of the basic image
is tiled onto the surface of a 3D object. The statement has the format shown in
FIG-32.13.

N4 N4
H‘mw l/ l/

In the diagram:
objno isan integer value specifying the object whose
texture is to be modified.
tmode isan integer value (1,2,3,4) which directly affects
how the tiled textureis applied to the object.

1 - normal tiling.

2 - imagesare mirrored/flipped so that
identical edges meet.

3 - Thelast pixel dong each edgeis
extended over the remainder of the
surface.

4 - Theimage appearsonly once. The
remainder of the surfaceis black.

mflag Determines if mipmapping isto be used.

0 - mipmapping used

1 - nomipmapping

In FIG-32.14 we see the effects of each possible value for tmode when applying
eyecol.bmp asatiled (2 by 2) texture on acube.

set object texture 1,1,0 set object texture 1,2,0 set object texture 1,3,0 set object texture 1,4,0

The program in LISTING-32.6 shows atile textured cube with the tmode val ue of
the SET OBJECT TEXTURE statement set to 2.

REM *** Set display resolution ***
SET DI SPLAY MCDE 1280, 1024, 32

REM *** | oad i mage ***
LOAD | MAGE "eyecol . bnp", 1

REM *** Create a plain ***
MAKE OBJECT PLAIN 1, 200, 200

continued on next page

DarkBASIC Pro: Texturing 807

LISTING-32.6
(continued)

Using the SET OBJECT
TEXTURE Statement

REM *** Texture object ***
TEXTURE OBJECT 1,1
SCALE OBJECT TEXTURE 1, 2,2

REM *** Nodify tile mapping ***
SET OBJECT TEXTURE 1, 4,0

REM *** End program ***
WAI T KEY
END

Activity 32.9

Typein and test the program in LISTING-32.6 (texture06.dbpro).

Try other settings for tmode and check the effects produced.

The SCROLL OBJECT TEXTURE Statement

FI1G-32.15

The SCROLL OBJECT
TEXTURE Statement

FIG-32.16
The Effects of the

SCROLL OBJECT
TEXTURE Statement

808

The texture image can be mapped onto an object with a varying degree of offset
along either theU or V axes. The overall effect isto modify which part of thetexture
image is placed at the top left corner of the object.

Theeffect is created using the SCROLL OBJECT TEXTURE statement which has
the format shown in FIG-32.15.

N—d N—d
l) l y Voffset

In the diagram:
objno isan integer value specifying the object whose
texture is to be scrolled.
Uoffset,Voffset are apair of real values representing the

coordinates of the image that are to be the
top-left corner of the texture when placed on a
3D object.

Examples of this statement in use are shown in FIG-32.16 where eyecol.bmp is
mapped to a plane object with various Uoffset, Voffset values.

scroll object texture 1,0.1,0.0 scroll object texture 1,0.0,0.1 scroll object texture 1,0.1,0.1

A complete program demonstrating the effect is givenin LISTING-32.7.

DarkBASIC Pro: Texturing

LISTING 32.7

Using the SCROLL
OBJECT TEXTURE
Statement

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** | oad i mage ***
LOAD | MAGE "eyecol . bnp", 1

REM *** Create and texture plane object ***
MAKE OBJECT PLAIN 1, 200, 200
TEXTURE OBJECT 1,1

REM *** Of fset the texture placed on the image***
SCROLL OBJECT TEXTURE 1,0.1,0.0

REM *** End program ***
WAI T KEY
END

Activity 32.10

Typein and test the program in LISTING-32.7 (texture07.dbpro).

The effect makes a permanent change to the texture for that image, so repeating the
same statement creates a further offset.

Activity 32.11

In your last program, add another SCROLL OBJECT TEXTURE statement
immediately after the first using the same values.

How does this affect the texture?

By placing the SCROLL OBJECT TEXTURE statement in aloop, the texture can

scroll over the surface of the 3D object.

Activity 32.12

Remove the second SCROLL OBJECT TEXTURE statement from your last
program and insert the remaining SCROLL OBJECT TEXTURE statement in
aDO..LOOP structure.

What affect does this have on the 3D object's texture?

Modify the SCROLL OBJECT TEXTURE statement so that the texture
scrolls horizontally rather than vertically.

Activity 32.13

In Chapter 31 you created a program in which two spheres followed the
movement of the mouse pointer (object3D11.dbpro).

Modify that program so that the spheres are textured using seamlesseye.bmp.

Add the appropriate SCROLL OBJECT TEXTURE statements so that the

pupils of the eyes face the mouse pointer.

DarkBASIC Pro: Texturing 809

The SET OBJECT TRANSPARENCY Statement

A colour other than black VWWhen an image containing black is mapped to a sprite, any black areasin theimage

canbecomethe are automatically transparent when the sprite appears on the screen. However, this
transparent colour using g ot the case with 3D objects.

the SET COLOR KEY

statement.

To demonstrate this, the next program (see LISTING-32.8) uses the image shown
in FIG-32.17 as the texture on arotating cube.

FIG-32.17

Image used to Texture a
Cube

LISTING-32.8 REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
Black Textured Areas are
not Transparent on a 3D REM *** |oad texture inage ***
Object LOAD | MAGE "DoNot . bnp", 2

REM *** Nake and position cube ***
MAKE OBJECT CUBE 1, 40
POSI TI ON OBJECT 1, 25, 0, 100

REM *** Texture cube with i mage ***
TEXTURE OBJECT 1, 2

REM *** Rotate cube ***
DO
Pl TCH OBJECT DOMW 1, 1.0
TURN OBJECT LEFT 1, 1.0
LOOP

REM *** End program ***
END

Activity 32.14

Typein and test the program given in LISTING-32.8 (texture08.dbpro).

However, we can forcea 3D object to make black (or whatever other colour asbeen
set as the background colour using the SET COLOR KEY statement) transparent
using the SET OBJECT TRANSPARENCY statement which hastheformat shown

in FIG-32.18.
FI1G-32.18
SET OBJECT|| | TRANSPARENCY I objno E I transflag
The SET OBJECT u J_I J—I
TRANSPARENCY
In the diagram:
objno isan integer value specifying the object whose
background texture colour isto be made
transparent.

810 DarkBASIC Pro: Texturing

transflag isOor 1.
0 - background colour not transparent.
1 - background colour transparent.

Activity 32.15
Modify your last program by adding the line
SET OBJECT TRANSPARENCY 1,1

immediately before the DO..LOOP structure.

How does this affect the appearance of the cube.

The SET DETAIL MAPPING ON Statement

FI1G-32.19

The Images Used To
Texture a 3D Object

FIG-32.20

The Two Images Applied
to aCube

FIG-32.21

The SET DETAIL
MAPPING ON Statement

A second image can be combined with the basi c textureimage of an object to create
anew texture consisting of both images.

For example, if we take the images shown in FIG-32.19 with image 1 being the
basic texture and image 2 the overlaid texture, then we achieve the effect shown in
FIG-32.20 when these are applied to a cube.

Image 1 Image 2

Notice that any black areasin image 2 are automatically transparent.

A second image is applied to the texture of an object using the SET DETAIL
MAPPING ON statement which has the format shown in FIG-32.21.

N—4
| | | I

In the diagram:

m

objno is an integer value specifying the object to which
a second texture image is to be added.

DarkBASIC Pro: Texturing 811

imgno is an integer value specifying the image object
containing the picture to be used as a second
texture.

LISTING-32.9 creates the rotating cube shown above. The main lines of code are

LOAD | MAGE "DoNot . bnp", 2

which loads the secondary image being used and

SET DETAIL MAPPING ON 1, 2

which applies thisimage as an overlaid texture.

LISTING-32.9 REM *** Set display resol ution ***
SET DI SPLAY MODE 1280, 1024, 32
Using a Secondary REM *** |oad texture inages ***

Texture on a 3D Object LOAD | MAGE "t extureWod. jpg", 1
LOAD | MAGE "DoNot . bnp", 2

REM *** Create and texture cube ***
MAKE OBJECT CUBE 1, 40

TEXTURE OBJECT 1,1

REM *** Add secondary texture ***
SET DETAIL MAPPING ON 1,2

REM *** Position cube ***
PCSI TI ON OBJECT 1, 25, 0, 100

REM *** Rotate cube ***
DO
PI TCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

Activity 32.16
Typein and test the program given in LISTING-32.9 (texture09.dbpro).
Replace DoNot.bmp with DoNotMag.bmp which contains black text on a

magenta background. Set magenta as the transparent colour using the SET
IMAGE COLORKEY statement.

We are limited to a single image when overlaying an object's texture with detail.
So, attempting to add a second detail image will simply remove the first from the
object.

Activity 32.17

Add FlagMag.bmp as a second detail image to the cube object in your last
program.

Wheat effect does this create?

If an object's texture has been tiled using the SCALE OBJECT TEXTURE
statement, any additional image added using SET DETAIL MAPPING ON will
also betiled to the same extent asthe original texture.

812 DarkBASIC Pro: Texturing

Activity 32.18

In your last program, remove all referencesto the flagmag.bmp file. Create a
tiled effect on the cube by using the SCALE OBJECT TEXTURE statement
with the Uscale and Vscal e parameters both set to 2.

How isthe DETAIL MAPPING image on the cube affected by the tiling?

The SET OBJECT FILTER Statement

FIG-32.22

The SET OBJECT
FILTER Statement

LISTING-32.10

Using the SET OBJECT
FILTER Statement

Different methods of texturing can be specified using the SET OBJECT FILTER
statement. The differences achieved have little obvious effect on the visible
appearance of thetextured object itself, but modify the algorithm used to createthat
texture. The statement has the format shown in FIG-31-22.

N—d
MWW I/

In the diagram:
objno isan integer value specifying the object whose
textureisto befiltered.
filterflag is0,1,0r2
0 - awaysusestheoriginal image
to texture (it never uses the smaller
images created by mipmapping).
1 - nosmoothing isused.
2 - useslinear filtering.

The program in LISTING-32.10 creates 3 spheres, each textured using one of the
filter options. You may see a dlight difference in the appearance of the spheres as
they move off into the background and reduce in size.

REM *** Set screen resolution ***

SET DI SPLAY MODE 1280, 1024, 32

REM *** | oad i mage used as texture ***
LOAD | MAGE "gri d8by8. bmp", 1,1

REM *** Create three spheres ***

MAKE OBJECT SPHERE 1 , 40

MAKE OBJECT SPHERE 2 , 40

MAKE OBJECT SPHERE 3 , 40

REM *** Texture each sphere ***
TEXTURE OBJECT 1,1
TEXTURE OBJECT 2,1
TEXTURE OBJECT 3,1

REM *** Set different filter for each sphere ***
SET OBJECT FILTER 1, O
SET OBJECT FILTER 2, 1
SET OBJECT FILTER 3, 2

REM *** Position spheres ***
POSI TI ON OBJECT 1,-42,0,0
POSI TI ON OBJECT 2,0,0,0

POSI TI ON OBJECT 3,42,0,0

continued on next page

DarkBASIC Pro: Texturing 813

LISTING-32.10
(continued)

Using the SET OBJECT
FILTER Statement

REM *** Noves spheres ***
FOR z = 1 TO 4000

MOVE OBJECT 1,1

MOVE OBJECT 2,1

MOVE OBJECT 3,1

VWAIT 10
NEXT z

REM *** End program ***
WAI T KEY
END

Activity 32.19

Type in and test the program given above (texturelO.dbpro).

Summary

814

® Texturing involves mapping an image onto the surface of a 3D object.

® UseLOAD IMAGEtoload any imagewhichisto be used to texturea3D object.
® Use TEXTURE OBJECT to map an image to an object.

® |mages stretch automatically to fit the surface of an object.

® On acube or box the image is repeated on each face.

@ On other 3D objects, the image appears only once.

Mipmaps are smaller versions of the original image which are used to speed up
mapping when atextured object becomes much smaller than the original image.

® Tiling isthe application of an image multiple times to the same surface.
® Use SCALE OBJECT TEXTURE to create atiled texture.

® To create a seamlesstile, make sure the opposite edges are complementary.

Use PLAY ANIMATION TO IMAGE and TEXTURE OBJECT to display a
video on the surface of an object.

® Use SET OBJECT TEXTURE to specify how animageis mapped to a surface.

® Use SCROLL OBJECT TEXTURE to create an offset mapping of theimage on

a3D surface.

® Use SET OBJECT TRANSPARENCY to make black areas of a 3D object

disappear.

® UseSET DETAIL MAPPING ON to apply asecondimageto analready textured

object.

® Use SET OBJECT FILTER to modify how an image is filtered when being

mapped onto an object.

DarkBASIC Pro: Texturing

Other Visual Effects

I ntroduction

Although adding texture to a 3D object is the commonest way of changing an

object's appearance, it isby no meansthe only option available. In this section we'll
see some other options that are available to usin DarkBASIC Pro.

Changing Colour and Transpar ency

The COLOR OBJECT Statement

FIG-32.23

The COLOR OBJECT
Statement

LISTING-32.11

Using COLOR OBJECT

Rather than add atextureto a3D object, we can giveit asurface of aspecific colour
using the COLOR OBJECT statement which has the format shown in FIG-32.23.

COLOR I OBJECTI I objno E I colour

In the diagram:
objno is an integer value specifying the object which is
to be coloured.
colour isan integer value specifying the colour to be

used on the object's surface.

For example, we could give object 1 ared surface using theline:

COLOR OBJECT 1, RGB(255, 0, 0)

Anexampleof thisstatement in operationisgivenin LISTING-32.11 which colours
arotating cubein red, changing to green when arandom event occurs.

REM *** Set display resolution ***
SET DI SPLAY MCDE 1280, 1024, 32

REM *** Seed random nunber generator ***
RANDOM ZE TI MER()
REM *** NMake and position cube ***
MAKE OBJECT CUBE 1, 40
POSI TI ON OBJECT 1, 25, 0, 100
REM *** Col our cube red ***
COLOR OBJECT 1, RGB(255,0,0)
REM *** Rot ate Cube ***
DO
PI TCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
REM *** One chance in 1000 of changing to green ***
I F RND(1000) = 500
COLOR OBJECT 1, RGB(0, 255, 0)
ENDI F
LOOP
REM *** End program ***
END

DarkBASIC Pro: Texturing 815

Activity 32.20

Typein and test the program given in LISTING-32.11 (texturell.dbpro).

A coloured surface cannot be used in conjunction with amain texture, but secondary
textures (created using SET DETAIL MAPPING ON) may still be used.

Activity 32.21

Modify your last program so that DoNot.bmp is used as a secondary texture on
the surface of the cube.

The GHOST OBJECT ON Statement

In FIG-32.24 we can see a cube which is semi-transparent with the grided planein
the background showing through the cube.

FIG-32.24

A Transparent Cube

You'll have to look

closely to see the cube!
We can create this effect using the GHOST OBJECT ON statement which hasthe
format shown in FIG-32.25.
FIG-32.25
N—4
The GHOST OBECT Vs s T | il | ezl
ON Statement
In the diagram:
objno isan integer value specifying the 3D object to
be made semi-transparent.
ghostflag isOto>5.

- object is semi-transparent

- object uses negative transparency

- object is semi-transparent but lighter
uses the image's a pha channel

- similar to 1 but lighter

- Object isopague

O~ wWNEO
1

The program in LISTING-32.12 demonstrates the effect of this instruction by
rotating the cube with atextured plane in the background.

816 DarkBASIC Pro: Texturing

LISTING-32.12

Using the GHOST
OBJECT ON Statement

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** | oad texture images ***
LOAD | MAGE "gri d8by8. bmp", 1
LOAD | MAGE "DoNot . bnp", 2

REM *** Nake and position cube ***
MAKE OBJECT CUBE 1, 40
POSI TI ON OBJECT 1, 25, 0, 100

REM *** Texture cube ***
TEXTURE OBJECT 1,1

REM *** Create background plane ***
MAKE OBJECT PLAIN 2,100, 100
TEXTURE OBJECT 2, 2

POSI TI ON OBJECT 2, 0, 0, 200

REM *** Create seni-transparent cube ***
GHOST OBJECT ON 1,0

REM *** Rotate cube ***
DO
Pl TCH OBJECT DOMN 1, 1.0
TURN OBJECT LEFT 1, 1.0
LOOP

REM *** End program ***
END

Activity 32.22
Typein and test the program given in LISTING-32.12 (texturel2.dbpro).

Modify the transflag value in the GHOST OBJECT ON statement and
observe the effects of the various settings.

The GHOST OBJECT OFF Statement

FI1G-32.26

The GHOST OBJECT
OFF Statement

The semi-transparency effect created by GHOST OBJECT ON can be disabled
using the GHOST OBJECT OFF statement which has the format shown in

FIG-32.26.
e =] [
In the diagram:
objno is an integer value specifying the 3D object in
which the semi-transparency mode is switched
off.

The FADE OBJECT Statement

Theamount of light reflected from the surface of a3D object can be modified using
the FADE OBJECT statement. This allows settings varying between no light
reflected and twice normal reflection. The statement has the format shown in
FIG-32.27.

DarkBASIC Pro: Texturing 817

FIG-32.27

N—4

Statement
In the diagram:
objno isan integer value specifying the 3D object
whose reflective index is to be changed.
value is an integer value between 0 and 200. A value of
zero means that the object will reflect no light;
avalue of 100 creates normal amount of reflected
light; avalue of 200 gives twice the normal
amount of reflected light.
The program in LISTING-32.13 demonstrates the effect of this statement by
gradually reducing the reflective value from 200 to zero.
REM *** Set display resolution ***
LISTING-32.13 SET DI SPLAY MODE 1280, 1024, 32
Ugl?g F¢DE OB‘]EtCT © [REM *** Load texture i nages ***
gb' etaD_ransparen LOAD | MAGE "t extureWod.jpg", 1
Ject Disappear LOAD | MAGE " DoNot . brp", 2

REM *** Make and position cube ***
MAKE OBJECT CUBE 1, 40
PGSI TI ON OBJECT 1, 25, 0, 100

REM *** Texture cube ***
TEXTURE OBJECT 1,1

REM *** Create background plain ***
MAKE OBJECT PLAIN 2,100, 100
TEXTURE OBJECT 2, 2

PGSI TI ON OBJECT 2,0, 0, 200

REM *** Start reflective value at 200 ***
reflectivity = 200

REM *** rotate cube ***

DO
PI TCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0
FADE OBJECT 1,reflectivity
REM *** Decrenent reflective value until it reaches zero ***
IF reflectivity >0

DEC reflectivity

ENDI F
WAIT 10

LOOP

REM *** End program ***
END

Activity 32.23

Typein and test the program given in LISTING-32.13 (texturel3.dbpro).

When used in combination with the GHOST OBJECT ON statement, the FADE
OBJECT statement can make a semi-transparent object disappear completely.

818 DarkBASIC Pro: Texturing

Activity 32.24
Inyour last program, add the line
GHOST OBJECT ON 1,0
immediately before the DO..LOOP structure.

How does this affect the cube?

There's still more to be said about texturing objects but we'll leave that to a later
chapter after we've covered other basic concepts such as cameras and lighting.

Summary

® Use COLOR OBJECT to tint the surface of a 3D object.

® Use GHOST OBJECT ON to make an object transparent.

® Use GHOST OBJECT OFF to make atransparent object opaque.

® Use FADE OBJECT to reduce the amount of light reflected by an object.

® \When used on a transparent object, FADE OBJECT can make that object

invisible.

® When used on an opaque object, FADE OBJECT can make that object

completely black.

DarkBASIC Pro: Texturing 819

Images with an Alpha Channel

I ntroduction

As we saw back in Chapter 30, some picture files contain an alpha channel which
can affect the visibilty of the main image. Thistype of picturefile, when used asa
texture, affects the overall result obtained.

Using Images with an Alpha Channel

The image windmillshaped.tga contains an image and an apha channel as shown

in FIG-32.28.
FI1G-32.28
An Image and its Alpha
Channel
Image Alpha Channel
We've aready seen that the SET OBJECT TRANSPARENCY statement affects
the black area of an texture image, but the statement also controls how an alpha
channel within an image affects the final texture.
The program in LISTING 32-14 textures as cube using windmillshaped.tga. With
thedefault settings, the al phachannel within theimagehasno effect onthetexturing
of the cube, but after a SET OBJECT TRANSPARENCY statement is used to
modify the texturing, the alpha channel changes the final look of the cube.
LISTING-32.14

REM *** Set display resolution ***

)) SET DI SPLAY MODE 1280, 1024, 32
Texturing with

Alpha-Channel Images REM *** Create cube ***

MAKE OBJECT CUBE 1, 10

REM *** Texture cube ***
LOAD | MAGE "wi ndmi | | shaped.tga”, 1
TEXTURE OBJECT 1,1

REM *** Rot ate cube ***
DO
REM *** | F key pressed, use al pha channel ***
IF INKEY$() <> ""
SET OBJECT TRANSPARENCY 1,1
ENDI F
TURN OBJECT LEFT 1,1
LOCoP
REM *** End program ***
END

Activity 32.25

Typein and test the program in LISTING-32.14 (texturel4.dbpro).

820 DarkBASIC Pro: Texturing

Noticethat the other parts of theimage do not disappear completely when the a pha
channel is activated. This is because the darkened areas of the apha channel are
grey and not black. If black had been used, all other parts of theimage would have
becomeinvisible.

Animagewith an aphachannel aso produces an effect when option 3is used with
the GHOST OBJECT ON statement.

Activity 32.26

Inyour last program, change the line
SET OBJECT TRANSPARENCY 1,1

to

GHOST OBJECT ON 1, 3

Observe how this affect the program's display.

Summary

® Use SET OBJECT TRANSPARENCY with an apha channel image to create
transparent or semitransparent texturing effects.

® Use GHOST OBJECT ON with option 3 to make use of the alpha channel
information in creating the final ghosting effect.

DarkBASIC Pro: Texturing 821

Creating a Complex 3D Shape

I ntroduction

By combining the basic 3D shapesavailableto uswe can create almost any complex
shape. However, this may take a considerable amount of work and require a great
deal of code. In reality we would probably create objects such asthese in a separate
3D drawing package and then import the resulting file into our DarkBASIC Pro
program (we'll see how to do this in Chapter 36). However, just to give us some
practice, well try creating asimple castle using only DarkBASIC Pro.

Designing the Castle

Wearegoing to saveourselvesagreat deal of timelater if westart by doing agrided
plan of the castle to give ourselves the basic layout and sizes. FIG-32.29 shows a
plan of the castle.

FI1G-32.29

A Rough Sketch of the
Object Required

Turret/ eret

Castle

Tu fh /T;rret

Grass
Path

Trees
[P TSSO S ODTDSDODETOOSOITOOD

Next, we need to create a more traditional drawing showing the characteristics of
the castle (see FIG-32.30). We might also draw specific parts in more detail.

822 DarkBASIC Pro: Texturing

FI1G-32.30

A More Detailed
Design of the Castle

Gathering the Components

Theactual texturefilesbeing used need to be obtained or created. If you're not much
of an artist, then you'll find plenty of texture files on the Internet, but if you're
intending to create acommercial product, remember that almost everything you see
on the Internet will be owned by someone and they expect to be paid if you are
going to use their material. Even material that is advertised as free may still need
to be paid for when used in acommercial product.

The textures used on the castle are shown in FIG-32.31.

FIG-32.31
Textures Used
Filename : CobbleStones.jpg Filename : stone.jpg Filename : grassl.jpg Filename : ceil_U3_01.jpg
Object : path Object . castle wallsand Object : lawn Object . castle ceiling
turrets
Filename : rock2.jpg Filename : tiles.jpg Filename : tree.jpg
Object . castle floor Object . castle and turret roofs Object : trees lining path

The coding (see LISTING-32.15) islong but fairly straight forward. The complete
castleis created by afunction, but this calls other functions which draw the various
parts of the castle.

Splitting the code in this way will help us keep the structure as understandable as
possible.

DarkBASIC Pro: Texturing 823

The Code

LISTING-32.15 REM *** Bui | di ng Conponents ***
REM *** Texture | nmages ***

Drawing the Castle #CONSTANT gr ass 1
#CONSTANT r oad 2
#CONSTANT tree 3
#CONSTANT fl oori ng 4
#CONSTANT wal | 5
#CONSTANT r oof i ng 6
#CONSTANT cover 8
#CONSTANT trellis 9
#CONSTANT t ransport 10
REM *** 3D Objects ***
#CONSTANT | awn 1
#CONSTANT appr oach 2
#CONSTANT fl oorl 3
#CONSTANT cei |i ng 5
#CONSTANT treel 7
#CONSTANT frontwal | 51
#CONSTANT backwal | 52
#CONSTANT | ef t wal | 53
#CONSTANT ri ghtwal | 54
#CONSTANT i nnerwal | 55
#CONSTANT turretl 56
#CONSTANT turretroofl 57
#CONSTANT turret?2 58
#CONSTANT turretroof2 59
#CONSTANT turret3 60
#CONSTANT turretroof3 61
#CONSTANT turret4 62
#CONSTANT turretroof4 63
#CONSTANT roof 1 64
#CONSTANT col umm 70

REM *** Set screen resolution ***
SET DI SPLAY MODE 1280, 1024, 32
DrawCast | e()

WAI T KEY

END

FUNCTI ON Dr awCast | e()
Loadl nages()
Dr awGr ounds()
Dr awExt er nal Wal | s()
Dr awRoof andCei | i ng()
DrawTurrets()
Dr awl nt er nal Col urms()
ENDFUNCTI ON

FUNCTI ON Loadl mages()
REM *** | oad texture images ***
LOAD | MAGE "grassl.jpg", | awn
LOAD | MAGE " Cobbl eSt ones. j pg", road
LOAD | MAGE "tree.jpg",tree
LOAD | MAGE "rock2.jpg", flooring
LOAD | MAGE "stone.jpg", wall
LOAD | MAGE "tiles.jpg", roofing
LOAD | MAGE "ceil _U3_01.]j pg", cover
ENDFUNCTI ON

continued on next page

824 DarkBASIC Pro: Texturing

LISTING-32.15
(continued)

Drawing the Castle

FUNCTI ON Dr awGr ounds()
REM *** Create |awn ***
MAKE OBJECT PLAIN | awn, 500, 700
TEXTURE OBJECT | awn, grass
SCALE OBJECT TEXTURE | awn, 100, 100
XROTATE OBJECT | awn, - 90
PCSI TI ON OBJECT | awn, 250, 0, 350
SET DETAI L MAPPI NG ON | awn, transport
REM *** Create approach road ***
MAKE OBJECT PLAIN approach, 50,700
TEXTURE OBJECT approach, r oad
SCALE OBJECT TEXTURE approach, 8, 50
XROTATE OBJECT approach, - 90
PCSI TI ON OBJECT approach, -25,0, 350
REM *** Create castle floor ***
MAKE OBJECT PLAIN floorl, 550,300
TEXTURE OBJECT floorl, flooring
SCALE OBJECT TEXTURE fl oor1, 100, 100
XROTATE OBJECT floorl, -90
PCSI TI ON OBJECT fl oor 1, 225, 0, 850
Dr awTr ees()

ENDFUNCTI ON

FUNCTI ON Dr awExt er nal Val | s()
REM *** Create front wall ***
MAKE OBJECT PLAIN frontwall, 550, 100
TEXTURE OBJECT frontwal |, wal |
SCALE OBJECT TEXTURE frontwal |, 30, 6
PCSI TI ON OBJECT frontwal |, 225,50, 700

REM *** Create back wall ***

MAKE OBJECT PLAI N backwal |, 550, 100
TEXTURE OBJECT backwal | , wal |

SCALE OBJECT TEXTURE backwal | , 50, 10
PCSI TI ON OBJECT backwal |, 225, 50, 1000

REM *** Create left wall ***

MAKE OBJECT PLAIN | eftwall, 300, 100
TEXTURE OBJECT |l eftwall, wall

SCALE OBJECT TEXTURE | eftwall, 30, 10
YROTATE OBJECT leftwall, -90

PCSI TI ON OBJECT | eftwal |, -50, 50, 850

REM *** Create right wall ***

MAKE OBJECT PLAIN rightwal |, 300, 100

TEXTURE OBJECT rightwal |, wall

SCALE OBJECT TEXTURE rightwal |, 30, 10

YROTATE OBJECT rightwal |, 90

POSI TI ON OBJECT ri ghtwal |, 500, 50, 850
ENDFUNCTI ON

FUNCTI ON DrawTurrets()
REM *** Create first turret ***
MAKE OBJECT CYLI NDER turretl, 200
SCALE OBJECT turretl, 40, 100, 40
MAKE OBJECT CONE turretroofl, 81
REM *** Texture turret ***
TEXTURE OBJECT turretl, wall
SCALE OBJECT TEXTURE turretl, 10, 10
TEXTURE OBJECT turretroofl,roofing
SCALE OBJECT TEXTURE turretroofl,5, 10
REM *** Position turret ***
POSI TI ON OBJECT turretl, -25,100,970
POSI TI ON OBJECT turretroofl, -25, 240, 970

continued on next page

DarkBASIC Pro: Texturing

825

LISTING-32.15
(continued)

Drawing the Castle

826

REM *** Second turret ***

MAKE OBJECT CYLI NDER turret?2, 200

SCALE OBJECT turret 2,40, 100, 40

MAKE OBJECT CONE turretroof2,81

REM *** Texture turret ***

TEXTURE OBJECT turret?2,wall

SCALE OBJECT TEXTURE turret?2, 10, 10

TEXTURE OBJECT turretroof 2, roofing

SCALE OBJECT TEXTURE turretroof2,5, 10

REM *** Position turret ***

POSI TI ON OBJECT turret2, 475,100, 970

POSI TI ON OBJECT turretroof 2,475, 240, 970

REM *** Third turret ***

MAKE OBJECT CYLI NDER turret3, 200

SCALE OBJECT turret 3,40, 100, 40

MAKE OBJECT CONE turretroof3, 81

REM *** Texture turret ***

TEXTURE OBJECT turret3, wall

SCALE OBJECT TEXTURE turret3, 10, 10

TEXTURE OBJECT turretroof 3, roofing

SCALE OBJECT TEXTURE turretroof3,5, 10

REM *** Position turret ***

POSI TI ON OBJECT turret3, -25,100, 725

POSI TI ON OBJECT turretroof 3, -25, 240, 725

REM *** Fourth turret ***

MAKE OBJECT CYLI NDER turret4, 200

SCALE OBJECT turretd4, 40, 100, 40

MAKE OBJECT CONE turretroof4,81

REM *** Texture turret ***

TEXTURE OBJECT turret4, wall

SCALE OBJECT TEXTURE turret4, 10, 10

TEXTURE OBJECT turretroof4,roofing

SCALE OBJECT TEXTURE turretroof4,5, 10

REM *** Position turret ***

POSI TI ON OBJECT turret4, 475,100, 725

POSI TI ON OBJECT turretroof4, 475, 240, 725
ENDFUNCTI ON

FUNCTI ON Dr awRoof AndCei | i ng()
REM *** Create nmain roof ***
MAKE OBJECT PLAIN roof 1, 550, 300
REM *** Texture main roof ***
TEXTURE OBJECT roof 1, roofing
SCALE OBJECT TEXTURE roof 1, 50, 10
REM *** Position roof ***
XROTATE OBJECT roof1, -90
POSI TI ON OBJECT roof 1, 225, 100, 850
REM *** Create ceiling ***
MAKE OBJECT PLAIN ceiling, 550, 300
REM *** Texture ceiling ***
TEXTURE OBJECT ceiling, cover
SCALE OBJECT TEXTURE ceiling,5,2
REM *** Position ceiling ***
XROTATE OBJECT ceiling, -90
POSI TI ON OBJECT cei | i ng, 225, 99, 850
ENDFUNCTI ON

FUNCTI ON Dr awl nt er nal Col ums()
RANDOM ZE TI MER()
FOR col = colum TO colum + 80
MAKE OBJECT BOX col, 20, 99. 8, 20
TEXTURE OBJECT col , wal |
SCALE OBJECT TEXTURE col, 5, 30
PCSI TI ON OBJECT col , RND(515) - 20, 49. 95, RND(270) +710
NEXT col
ENDFUNCTI ON

continued on next page

DarkBASIC Pro: Texturing

LISTING-32.15 FUNCTI ON Dr awTr ees()

(continued) REM *** Create trees ***
) FOR c = treel TOtreel + 30
Drawing the Castle MAKE OBJECT PLAIN c, 25, 35

TEXTURE OBJECT c, tree
SET OBJECT TRANSPARENCY c, 1
PCSI TI ON OBJECT c, -45,17,(c-6) * 17.5
NEXT c
ENDFUNCTI ON

The function Drawlnternal Columns() adds randomly placed columns within the
castle. This will allow our player to have obstacles to navigate without having to
go to agreat deal of trouble designing an exact layout for the castle'sinterior.

The DrawTrees() function draws a set of trees by texturing a set of planes with a
tree image.

Activity 32.27

Typein and test the program given above (castle01.dbpro).

Activity 32.28

Remove the main section from the program, leaving only the constants and
functions. Savethis as castle.dbpro.

Activity 32.29

Create a program (gallows.dbpro) containing afunction, DrawGallows(), that
produces a 3D gallows similar to that in the sketch below. Use any appropriate

textures.

= =

The gallows platform should be centred on (-125,7.5,0) and be 15 units high,
and 50 units in width and depth. Place the gallows on a 300 by 300 cobbled
plane.

In the main section of the program include the lines

PCSI TI ON CAMERA 0, 8, - 100
PO NT CAMERA -150, 10,0

after the call to the DrawGallows() function. Thiswill ensure that the camera
is pointing at the gallows.

DarkBASIC Pro: Texturing 827

Sky Spheres

FI1G-32.32

Using a Sky Sphere

828

Both the castle and the gallows look a bit out of place with the blue background.
One way to create amore natural environment isto place alarge sphere round the
whole thing and texture that sphere with an image of the sky. Thisis known as a
sky sphere. FIG-32.32 shows the results obtained by adding a sky sphere to the
gallows program.

Toimplement asky spherein our gallowsprogram, we'll start by making the ground
plane set up in DrawGallows() a bit larger

MAKE OBJECT PLAIN G oundQbj, 2000, 2000

and then increase the tiling so the cobbles don't get too large:

SCALE OBJECT TEXTURE GroundObj, 150, 150

These are the only changes required in the DrawGallows() function. Now we can
add afew lines to the main section. First we need the image to be used to texture
the sphere with a sky effect:

LOAD | MAGE "sky.jpg", 1
Next we can create the sphere with the same diameter as the plane:
MAKE OBJECT SPHERE 1, - 2000, 50, 50

Notice that the sphere has been created with extra polygons. This helps smooth out
the sky background.

Apparently al we need to do now is texture the sphere:

TEXTURE OBJECT 1,1

DarkBASIC Pro: Texturing

Activity 32.30

Modify your gallows.dbpro program using the lines given above. The main
section should be coded as:

REM *** Set up screen ***
SET DI SPLAY MODE 1280, 1024, 32

DrawGal | ows()

REM *** Create the sky sphere ***
LOAD | MAGE "sky.jpg", 1

MAKE OBJECT SPHERE 1, 2000, 50, 50
TEXTURE OBJECT 1,1

REM *** Set up camera ***
POSI TI ON CAMERA 0, 8, - 100
PO NT CAMERA - 150, 10,0

REM *** End program ***
WAI T KEY
END

Don't worry if you don't see any sky!

We can't see the texture on the sphere because we're on the inside of the sphere and
DarkBASIC Pro has culled the polygons that make up the sphere.

There are two ways to solve this problem. The first is to switch off culling on the
sphere. This can be done using the line;

SET OBJECT CULL 1,0

Activity 32.31

Add the above line to the main section of your code. Isthe sky now visible?

An alternativeway of displaying the sphere'stextureisto turn the sphereinside out!
Thisis done by specifying a negative size for the sphere when it is being created.

Activity 32.32
Change theline
MAKE OBJECT SPHERE 1, 2000, 50, 50
to have anegative size value:
MAKE OBJECT SPHERE 1, - 2000, 50, 50
and remove the SET OBJECT CULL statement.

How does this affect the sphere's texture?

DarkBASIC Pro: Texturing 829

To cure the problem of an inverted mirror image (which isn't actually aproblemin
this case) we need to save the original image asan inverted mirror imagein thefirst
place and this will then be reversed when the image is used as a texture.

Activity 32.33

If you have an appropriate paint package, invert and mirror the image sky.jpg
(save the resulting image as skylM.jpg) and use the new image as a texture for
the sky sphere.

If you don't have an appropriate package, the inverted mirror imageis
supplied with the images for this chapter.

Summary

® A sky sphere allows us to create a sky affect around our 3D world.
® A sky sphereisalarge sphere textured with an image of the sky.
® To make the sphere's texture visible from within the sphere, switch off the

sphere'sculling or createand inverted mirror image of thesky and useit to texture
a sphere with a negative diameter value.

830 DarkBASIC Pro: Texturing

solutions
Activity 32.1

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** |Load texture inmge ***
LOAD | MAGE "eyecol . bnp", 1
REM *** Create cube ***
MAKE OBJECT CUBE 1, 40
REM *** Add texture to cube ***
TEXTURE OBJECT 1,1
REM *** Position cube ***
PCSI TI ON OBJECT 1, 25, 0, 100
REM *** Rot ate cube continuously ***
DO
TURN OBJECT LEFT 1, 1.0
LOoP
REM *** End program ***
END

Activity 32.2
To change shape requires the line

MAKE OBJECT CUBE 1, 40
to be replaced by each of the following in turn:

MAKE OBJECT BOX 1, 10, 20, 30
MAKE OBJECT CYLINDER 1, 15
MAKE OBJECT CONE 1, 15
MAKE OBJECT SPHERE 1, 10

The cube and box repeat the texture image on each side;
other shapes show the image only once.

Activity 32.3

No solution required.

Activity 32.4

The texture seems alittle more blurred when using
mipmaps, but the texturing process seems to be carried out
at afaster framerate.

Activity 32.5

No solution required.

Activity 32.6

No solution required.

Activity 32.7

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** |oad texture inmage ***
LOAD | MAGE "seamnl esseye. bnp", 1
REM *** Create and texture sphere ***
MAKE OBJECT SPHERE 1, 40, 40, 40
TEXTURE OBJECT 1,1
DO

TURN OBJECT LEFT 1, 1.0
LOOP
END

DarkBASIC Pro: Texturing

Activity 32.8

By changing the coordinates of the bottom right corner of
the video to 10,10, the video itself isonly 11 pixels by 11
pixels, and, when expanded to cover the surface of the
cube becomes indistinct and blocky.

By changing the corner values from 10,10 to 1000,1000
we make the video 1001 pixels by 1001 pixels (actually
larger than the original recording). Since we cannot add
any detail which was not in the original recording, this
size does not achieve any better results than alower
resolution (say 640 by 640), but does increase the load on
the video hardware and slows down the whole process.

Activity 32.9

No solution required.

Activity 32.10

No solution required.

Activity 32.11

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** |oad i nage ***

LOAD | MAGE "eyecol . bnp", 1

REM *** Create and texture plain object ***
MAKE OBJECT PLAIN 1, 200, 200
TEXTURE OBJECT 1,1

REM *** COf fset texture on inage***
SCROLL OBJECT TEXTURE 1,0.1,0.0
WAI T KEY

SCROLL OBJECT TEXTURE 1,0.1,0.0
REM *** End program ***

WAI T KEY

END

We can see from the results produced by the program that
the scroll effect is cumulative, with the image moving
another step to the left when the second SCROLL
OBJECT TEXTURE statement is applied.

Activity 32.12

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** |oad i nage ***
LOAD | MAGE "eyecol . bnp", 1
REM *** Create and texture plain object ***
MAKE OBJECT PLAIN 1, 200, 200
TEXTURE OBJECT 1,1
REM *** (Of fset texture placed on inage***
DO
SCROLL OBJECT TEXTURE 1,0.1,0.0
LOooP
REM *** End program ***
WAI T KEY
END

Theimage scrolls vertically.

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** | oad inage ***

LOAD | MAGE "eyecol . bnmp", 1

831

REM *** Create and texture plain object
MAKE OBJECT PLAIN 1,200, 200
TEXTURE OBJECT 1,1

REM *** Of fset texture placed on inage***

DO
SCROLL OBJECT TEXTURE 1,0.0,0.1
LOoP
REM *** End program ***
WAI T KEY
END

Activity 32.13

Acti

Acti

Acti

832

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Make and position spheres ***
LOAD | MAGE "eyecol . bnp", 1

MAKE OBJECT SPHERE 1, 40

PCSI TI ON OBJECT 1, 25, - 20, 100

MAKE OBJECT SPHERE 2, 40

POSI TI ON OBJECT 2, -25,-20, 100

REM *** Texture spheres ***

TEXTURE OBJECT 1,1

TEXTURE OBJECT 2,1

REM *** (Offset so eyes are at front ***
SCROLL OBJECT TEXTURE 1, 0.51,0.0
SCROLL OBJECT TEXTURE 2,0.51,0.0

REM *** Make eyes fol | ow nouse ***
DO

x3D = MOUSEX() - SCREEN WDTH()/2
y3D = - (MOUSEY() - SCREEN HEI GHT()/ 2)
PO NT OBJECT 1, x3D,y3D,-300
PO NT OBJECT 2, x3D,y3D,-300
LOOP
REM *** End program ***
WAI T KEY
END
vity 32.14
No solution required.
vity 32.15
REM *** Set display resolution ***

SET DI SPLAY MODE 1280, 1024, 32
REM *** Load texture inmage ***
LOAD | MAGE " DoNot . bnp", 2
REM *** NMake and position cube ***
MAKE OBJECT CUBE 1, 40
POSI TI ON OBJECT 1, 25, 0, 100
REM *** Texture cube with inage ***
TEXTURE OBJECT 1,2
REM *** Make bl ack areas of texture ***
REM *** transparent ***
SET OBJECT TRANSPARENCY 1, 1
REM *** Rotate cube ***
DO
PI TCH OBJECT DOMW 1, 1.0
TURN OBJECT LEFT 1, 1.0
LOoP
REM *** End program ***
END

Any part of the cube which is textured with black
disappears.

vity 32.16

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** Make magenta transparent
SET | MAGE COLORKEY 255, 0, 255
REM *** |oad texture inages ***

* KKk

LOAD | MAGE "t extureWod.jpg", 1
LOAD | MAGE " DoNot Mag. bmp", 2
REM *** Create and texture cube ***

MAKE OBJECT CUBE 1, 40

TEXTURE OBJECT 1,1

REM *** Add secondary texture ***

SET DETAIL MAPPING ON 1,2

REM *** Position cube ***

PCSI TI ON OBJECT 1, 25, 0, 100

REM *** Rot ate cube ***

DO PI TCH OBJECT DOWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOoP

REM *** End program ***

END

Activity 32.17

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

REM *** Set magenta as transparent
SET | MAGE COLORKEY 255, 0, 255

REM *** |Load texture inages ***
LOAD | MAGE "t extureWod. jpg", 1
LOAD | MAGE " DoNot Mag. bmp", 2

LOAD | MAGE " Fl agvag. bnp", 3

REM *** Create and texture cube ***
MAKE OBJECT CUBE 1, 40

TEXTURE OBJECT 1,1

REM *** Add text as secondary texture ***

SET DETAIL MAPPI NG ON 1, 2

REM *** Try using another texture *

SET DETAIL MAPPI NG ON 1,3

REM *** Position cube ***

POSI TI ON OBJECT 1, 25, 0, 100

REM *** Rot ate cube ***

DO PI TCH OBJECT DOMWN 1, 1.0
TURN OBJECT LEFT 1, 1.0

LOOP

REM *** End program ***

END

Only the wood and flag textures show; the text
OPEN" ismissing.

Activity 32.18

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32
REM *** Set magenta as transparent
SET | MAGE COLORKEY 255, 0, 255
REM *** |oad texture inages ***
LOAD | MAGE "t extureWod. jpg", 1
LOAD | MAGE " DoNot Mag. bnp", 2
REM *** Create and texture cube ***
MAKE OBJECT CUBE 1, 40
TEXTURE OBJECT 1,1
REM *** Tile cube's texture ***
SCALE OBJECT TEXTURE 1, 2, 2
REM *** Add secondary texture ***
SET DETAIL MAPPING ON 1,2
REM *** Position cube ***
PCSI TI ON OBJECT 1, 25, 0, 100
REM *** Rot ate cube ***
DO PI TCH OBJECT DO 1, 1.0

TURN OBJECT LEFT 1, 1.0
LOOP
REM *** End program ***
END

The DETAIL MAPPING image is also tiled.

DarkBASIC Pro: Texturing

* ko

* %

"DO NOT

* %k

Activity 32.19 WAIT 10

LooP
No solution required. REM *** End program ***
END
Activity 32.20 The cube fades until it is completely invisible.
No solution required. o
Activity 32.25
Activity 32.21 No solution required.
REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32 Activity 32.26
REM *** Seed random nunber generator ***
RANDOM ZE Tl MER() REM *** Set display resolution ***
REM *** |Load i nage *** SET DI SPLAY MODE 1280, 1024, 32
LOAD | MAGE "DoNot . bnp", 1 REM *** Create cube ***
REM *** NMake and position cube *** MAKE OBJECT CUBE 1, 10
MAKE OBJECT CUBE 1, 40 REM *** Texture cube ***
REM *** Create detail mapping *** LOAD | MAGE "wi ndmi | | shaped. tga”, 1
SET DETAIL MAPPING ON 1,1 TEXTURE OBJECT 1,1
PCOSI TI ON OBJECT 1, 25, 0, 100 REM *** Rotate cube ***
REM *** Col our cube red *** DO
COLOR OBJECT 1, RGB(255,0,0) REM *** | F key pressed, ghost ***
REM *** Rotate Cube *** IF INKEY$() <> ""
DO GHOST OBJECT ON 1,3
PI TCH OBJECT DOMW 1, 1.0 ENDI F
TURN OBJECT LEFT 1, 1.0 TURN OBJECT LEFT 1,1
REM *** 1 in 1000 of going green *** LooP
I F RND(1000) = 500 REM *** End program ***
COLOR OBJECT 1, RGB(0, 255, 0) END
ENDI F
LOCP
REM *** End program *** ACtiVity 32.27
END
No solution required.
Activity 32.22

Activity 32.28

No solution required.

No solution required.

Activity 32.23

Activity 32.29
No solution required.

REM *** Set display resolution ***
SET DI SPLAY MODE 1280, 1024, 32

Activity 32.24 Dr awnGal | ows()
PO NT CAMERA - 150, 10,0
REM *** Set display resolution *** WAI T KEY
SET DI SPLAY MODE 1280, 1024, 32 END

REM *** |oad texture inages ***
LOAD | MAGE "t extureWwod. jpg", 1
LOAD | MAGE " DoNot . bnp", 2

REM *** NMake and position cube *** FUNCTI ON Dr awGal | ows()

MAKE OBJECT CUBE 1, 40 REM *** Set up nanes ***

POSI TI ON OBJECT 1, 25,0, 100 REM *** (bj ect nanes ***

REM *** Texture cube *** #CONSTANT ~ GroundQbj 901

TEXTURE OBJECT 1,1 #CONSTANT Pl at f or mbj 902

REM *** Create background plain *** #CONSTANT Verti cal Post Obj 903

MAKE OBJECT PLAIN 2, 100, 100 #CONSTANT Hor i zont al Post Cbj 904

TEXTURE OBJECT 2, 2 #CONSTANT Di agonal Post Obj 905

POSI TI ON OBJECT 2, 0, 0, 200 #CONSTANT ~ TopSt epObj 906

REM *** Start reflective value at 200 *** #CONSTANT M ddl eSt epObj 907

reflectivity = 200 #CONSTANT Bot t onf5t epOhj 908

REM *** Make cube transparent *** #CONSTANT St epEdgeRi ght Gbj 909

GHOST OBJECT ON 1,0 #CONSTANT St epEdgelef t Obj 910

REM *** rotate cube *** REM *** | nage nanes ***

DO #CONSTANT Cobbl el ng 901
PI TCH OBJECT DOMWN 1, 1.0 #CONSTANT Pl anksl ng 902
TURN OBJECT LEFT 1, 1.0 #CONSTANT Wodl ng 903
FADE OBJECT 1,reflectivity REM *** Load texture images ***
REM *** Reduce reflectivity to zero *** LOAD | MAGE "Text ureWod. j pg", Pl anksl ng
IF reflectivity >0 LOAD | MAGE " Cobbl eSt ones. j pg", Cobbl el ng

DEC reflectivity LOAD | MAGE "Wbod. j pg", WbodI ng
ENDI F REM *** Create cobbl ed square ***

MAKE OBJECT PLAIN G oundCbj, 300, 300

DarkBASIC Pro: Texturing 833

TEXTURE OBJECT G oundQbj, Cobbl el ng
SCALE OBJECT TEXTURE GroundObj, 30, 30
XROTATE OBJECT GroundObj, - 90
REM *** Create platform***
MAKE OBJECT BOX Pl at f or nbj , 50, 15, 50
TEXTURE OBJECT Pl at f ormbj, Pl anksl ng
SCALE OBJECT TEXTURE Pl at fornmbj, 2,2
PCSI TI ON OBJECT Pl at fornibj,-125,7.5,0
REM *** Create vertical post ***
MAKE OBJECT BOX Verti cal Post Obj, 2, 30, 2
TEXTURE OBJECT Verti cal Post Obj, Wodl ny
POSI TI ON OBJECT Verti cal Post Obj ,
%-147.5,30,0
REM *** Create horizontal post ***
MAKE OBJECT BOX Hori zont al Post Obj ,
%2, 15,2
TEXTURE OBJECT Hori zont al Post Obj ,
LWodl ng
ZROTATE OBJECT Hori zont al Post Obj , 90
POSI TI ON OBJECT Hori zont al Post Obj ,
%-139, 44,0
REM *** Create di agonal post ***
MAKE OBJECT BOX Di agonal Post Obj, 1, 10,1
TEXTURE OBJECT Di agonal Post Cbj, Whodl ng
ZROTATE OBJECT Di agonal Post Obj, -45
POSI TI ON OBJECT Di agonal Post Obj ,
$- 144, 40,0
REM *** Make top step ***
MAKE OBJECT BOX TopSt epObj, 10, 0. 3, 3
TEXTURE OBJECT TopStepOhj, Wodl ng
PCSI TI ON OBJECT TopSt epQbj, - 130, 12, - 26
REM *** Make middle step ***
CLONE OBJECT M ddl eStepOhj, TopSt epObj
POSI TI ON OBJECT M ddl eSt epObj , - 130, 8, - 29
REM *** Make bottom step ***
CLONE OBJECT Bott onft epObj , TopSt epOhj
PGCSI TI ON OBJECT Bot t onfSt epObj , - 130, 4, - 32
REM *** Make right step edge***
MAKE OBJECT BOX St epEdgeRi ght Obj, 0. 3, 4, 20
TEXTURE OBJECT St epEdgeRi ght Cbj , WhodI ng
XROTATE OBJECT St epEdgeRi ght Obj, - 50
PCSI TI ON OBJECT St epEdgeRi ght Obj ,
%-125, 6, - 30
REM *** Make | eft step edge ***
CLONE OBJECT St epEdgelLeft Obj,
% St epEdgeRi ght Obj
POSI TI ON OBJECT St epEdgelLeft Obj,
%-135, 6, - 30

ENDFUNCTI ON

Activity 32.30

The changes to the cobbled square in the DrawGallows()
function are shown in bold below:

REM *** Create cobbl ed square ***

MAKE OBJECT PLAIN G oundObj, 2000, 2000
TEXTURE OBJECT G oundQbj, Cobbl el ng
SCALE OBJECT TEXTURE G oundQbj, 150, 150

Activity 32.31
The sky should now be visible.

Activity 32.32

The sphere's texture is upside down and mirrored.

Activity 32.33

No solution required.

834

DarkBASIC Pro: Texturing

